BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 03-24-2019, 10:41 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default The NMR signature of gluconoylation: a frequent N-terminal modification of isotope-labeled proteins

The NMR signature of gluconoylation: a frequent N-terminal modification of isotope-labeled proteins

Abstract

N-terminal gluconoylation is a moderately widespread modification in recombinant proteins expressed in Escherichia coli, in particular in proteins bearing an N-terminal histidine-tag. This post-translational modification has been investigated mainly by mass spectrometry. Although its NMR signals must have been observed earlier in spectra of 13C/15N labeled proteins, their chemical shifts were not yet reported. Here we present the complete 1H and 13C chemical shift assignment of the N-terminal gluconoyl post-translational modification, based on a selection of His-tagged protein constructs (CCL2, hnRNP A1 and Lin28) starting with Met-Gly-...-(His)6. In addition, we show that the modification can hydrolyze over time, resulting in a free N-terminus and gluconate. This leads to the disappearance of the gluconoyl signals and the appearance of gluconate signals during the NMR measurements. The chemical shifts presented here can now be used as a reference for the identification of gluconoylation in recombinant proteins, in particular when isotopically labeled.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Production of isotope-labeled proteins in insect cells for NMR.
Production of isotope-labeled proteins in insect cells for NMR. Related Articles Production of isotope-labeled proteins in insect cells for NMR. J Biomol NMR. 2018 Apr 23;: Authors: Franke B, Opitz C, Isogai S, Grahl A, Delgado L, Gossert AD, Grzesiek S Abstract Baculovirus-infected insect cells have become a powerful tool to express recombinant proteins for structural and functional studies by NMR spectroscopy. This article provides an introduction into the insect cell/baculovirus expression system and its use for the production...
nmrlearner Journal club 0 04-26-2018 02:15 AM
Production of isotope-labeled proteins in insect cells for NMR
Production of isotope-labeled proteins in insect cells for NMR Abstract Baculovirus-infected insect cells have become a powerful tool to express recombinant proteins for structural and functional studies by NMR spectroscopy. This article provides an introduction into the insect cell/baculovirus expression system and its use for the production of recombinant isotope-labeled proteins. We discuss recent advances in inexpensive isotope-labeling methods using labeled algal or yeast extracts as the amino acid source and give examples of advanced NMR...
nmrlearner Journal club 0 04-23-2018 05:00 PM
[NMR paper] Differentially Isotope-Labeled Nucleosomes to Study Asymmetric Histone Modification Crosstalk by Time-Resolved NMR Spectroscopy.
Differentially Isotope-Labeled Nucleosomes to Study Asymmetric Histone Modification Crosstalk by Time-Resolved NMR Spectroscopy. Related Articles Differentially Isotope-Labeled Nucleosomes to Study Asymmetric Histone Modification Crosstalk by Time-Resolved NMR Spectroscopy. Angew Chem Int Ed Engl. 2016 May 24; Authors: Liokatis S, Klingberg R, Tan S, Schwarzer D Abstract Post-translational modifications (PTMs) of histones regulate chromatin structure and function. Because nucleosomes contain two copies each of the four core...
nmrlearner Journal club 0 05-25-2016 02:33 PM
CIL partners to provide more isotope-labeled proteins to pharma - OutSourcing-Pharma.com
CIL partners to provide more isotope-labeled proteins to pharma - OutSourcing-Pharma.com <img alt="" height="1" width="1" /> CIL partners to provide more isotope-labeled proteins to pharma OutSourcing-Pharma.com "Nexomics success in developing techniques to determine protein structure using Nuclear Magnetic Resonance (NMR) spectroscopy nicely complements CIL's mission to offer isotope enriched reagents used to produce labeled recombinant protein. Read here
nmrlearner Online News 0 01-30-2014 05:38 PM
A strong 13C chemical shift signature provides the coordination mode of histidines in zinc-binding proteins
A strong 13C chemical shift signature provides the coordination mode of histidines in zinc-binding proteins Abstract Zinc is the second most abundant metal ion incorporated in proteins, and is in many cases a crucial component of protein three-dimensional structures. Zinc ions are frequently coordinated by cysteine and histidine residues. Whereas cysteines bind to zinc via their unique Sγ atom, histidines can coordinate zinc with two different coordination modes, either Nδ1 or Nε2 is coordinating the zinc ion. The determination of this coordination mode is crucial for the accurate...
nmrlearner Journal club 0 04-23-2012 03:31 AM
Influence of Substrate Modification and C-Terminal Truncation on the Active Site Structure of Substrate-Bound Heme Oxygenase from Neisseriae meningitidis. A 1H NMR Study
Influence of Substrate Modification and C-Terminal Truncation on the Active Site Structure of Substrate-Bound Heme Oxygenase from Neisseriae meningitidis. A 1H NMR Study http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi200978g/aop/images/medium/bi-2011-00978g_0009.gif Biochemistry DOI: 10.1021/bi200978g http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/BYT7Ijd6pDI More...
nmrlearner Journal club 0 09-22-2011 05:37 AM
Influence of substrate modification and C-terminal truncation on the active site structure of substrate-bound heme oxygenase from Neisseriae meningitidis; A 1H NMR study.
Influence of substrate modification and C-terminal truncation on the active site structure of substrate-bound heme oxygenase from Neisseriae meningitidis; A 1H NMR study. Influence of substrate modification and C-terminal truncation on the active site structure of substrate-bound heme oxygenase from Neisseriae meningitidis; A 1H NMR study. Biochemistry. 2011 Aug 27; Authors: Peng D, Satterlee JD, Ma LH, Dallas JL, Smith KM, Zhang X, Sato M, La Mar GN Abstract Heme oxygenase, HO, from the pathogenic bacterium N. meningitidis, NmHO, which...
nmrlearner Journal club 0 08-30-2011 04:52 PM
An economical method for producing stable-isotope labeled proteins by the E. coli cel
An economical method for producing stable-isotope labeled proteins by the E. coli cell-free system Abstract Improvement of the cell-free protein synthesis system (CF) over the past decade have made it one of the most powerful protein production methods. The CF approach is especially useful for stable-isotope (SI) labeling of proteins for NMR analysis. However, it is less popular than expected, partly because the SI-labeled amino acids used for SI labeling by the CF are too expensive. In the present study, we developed a simple and inexpensive method for producing an SI-labeled protein...
nmrlearner Proteins 0 11-07-2010 02:47 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:55 AM.


Map