BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 03-05-2014, 11:57 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR screening of new carbocyanine dyes as ligands for affinity chromatography.

NMR screening of new carbocyanine dyes as ligands for affinity chromatography.

Related Articles NMR screening of new carbocyanine dyes as ligands for affinity chromatography.

J Mol Recognit. 2014 Apr;27(4):197-204

Authors: Cruz C, Boto RE, Drzazga AK, Almeida P, Queiroz JA

Abstract
Four new carbocyanines containing symmetric and asymmetric heterocyclic moieties and N-carboxyalkyl groups have been synthesized and characterized. The binding mechanism established between these cyanines and several proteins was evaluated using saturation transfer difference (STD) NMR. The results obtained for the different dyes revealed a specific interaction to the standard proteins lysozyme, ?-chymotrypsin, ribonuclease (RNase), bovine serum albumin (BSA), and gamma globulin. For instance, the two un-substituted symmetrical dyes (cyanines 1 and 3) interacted preferentially through its benzopyrrole and dibenzopyrrole units with lysozyme, ?-chymotrypsin, and RNase, whereas the symmetric disulfocyanine dye (cyanine 2) bound BSA and gamma globulin through its carboxyalkyl chains. On the other hand, the asymmetric dye (cyanine 4) interacts with lysozyme and ?-chymotrypsin through benzothiazole moiety and with RNase through dibenzopyrrole unit. Thus, STD-NMR technique was successfully used to screen cyanine-protein interactions and determine potential binding sites of the cyanines for posterior use as ligands in affinity chromatography. Copyright © 2014 John Wiley & Sons, Ltd.


PMID: 24591177 [PubMed - in process]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Metabolomic investigation of Arthus reaction in a rat model using proton nuclear magnetic resonance (1H NMR) spectroscopy and rapid resolution liquid chromatography (RRLC).
Metabolomic investigation of Arthus reaction in a rat model using proton nuclear magnetic resonance (1H NMR) spectroscopy and rapid resolution liquid chromatography (RRLC). http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.rsc.org-images-entities-char_z_RSClogo.gif Related Articles Metabolomic investigation of Arthus reaction in a rat model using proton nuclear magnetic resonance (1H NMR) spectroscopy and rapid resolution liquid chromatography (RRLC). Mol Biosyst. 2013 Jun;9(6):1423-35 Authors: Zhang X, Shen J, Cao B, Xu L, Zhao...
nmrlearner Journal club 0 02-19-2014 03:12 PM
Reversed-Phase LC Isolates Potent Insecticidal Protein From Tarantula - LCGC Chromatography Online
Reversed-Phase LC Isolates Potent Insecticidal Protein From Tarantula - LCGC Chromatography Online http://www.bionmr.com//t3.gstatic.com/images?q=tbn:ANd9GcQPvzVNyrq21tcZWrk-F8daI_eTIZQf2JRjrGMp_N-ih8CFKL5y4R-wnmulIW0Ic3xWjeUk_Lq5 LCGC Chromatography Online <img alt="" height="1" width="1" /> Reversed-Phase LC Isolates Potent Insecticidal Protein From Tarantula LCGC Chromatography Online The structure of the peptide, was determined by nuclear magnetic resonance (NMR) spectroscopy and indicated high thermal and chemical stability. According to the paper, this suggests the potential to...
nmrlearner Online News 0 10-03-2013 03:31 PM
Human multiprotein bridging factor 1 and Calmodulin do not interact in vitro as confirmed by NMR spectroscopy and CaM-agarose affinity chromatography.
Human multiprotein bridging factor 1 and Calmodulin do not interact in vitro as confirmed by NMR spectroscopy and CaM-agarose affinity chromatography. Human multiprotein bridging factor 1 and Calmodulin do not interact in vitro as confirmed by NMR spectroscopy and CaM-agarose affinity chromatography. Protein Expr Purif. 2011 Jul 14; Authors: Babini E, Hu X, Parigi G, Vignali M The human multiprotein bridging factor 1 (hMBF1) has been established in different cellular types to have the role of transcriptional coactivator. It is also reported to be...
nmrlearner Journal club 0 07-26-2011 09:30 PM
[NMR tweet] Gas chromatography and nuclear magnetic resonance..*yawns*
Gas chromatography and nuclear magnetic resonance..*yawns* Published by napturally_me (Brittney Lewis) on 2010-12-06T08:35:03Z Source: Twitter
nmrlearner Twitter NMR 0 12-06-2010 09:10 AM
[NMR paper] Competition STD NMR for the detection of high-affinity ligands and NMR-based screenin
Competition STD NMR for the detection of high-affinity ligands and NMR-based screening. Related Articles Competition STD NMR for the detection of high-affinity ligands and NMR-based screening. Magn Reson Chem. 2004 Jun;42(6):485-9 Authors: Wang YS, Liu D, Wyss DF The reported competition STD NMR method combines saturation transfer difference (STD) NMR with competition binding experiments to allow the detection of high-affinity ligands that undergo slow chemical exchange on the NMR time-scale. With this technique, the presence of a competing...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] NMR probing of protein-protein interactions using reporter ligands and affinity tags.
NMR probing of protein-protein interactions using reporter ligands and affinity tags. Related Articles NMR probing of protein-protein interactions using reporter ligands and affinity tags. J Am Chem Soc. 2004 Feb 18;126(6):1636-7 Authors: Ludwiczek ML, Baminger B, Konrat R A novel method is proposed for the detection and quantification of protein-protein interactions in solution. In this approach, one protein binding partner is tagged with a ligand binding domain, and protein-protein interaction is monitored via changes in the NMR relaxation...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] Isotope-Filtered Affinity NMR
Isotope-Filtered Affinity NMR Related Articles Isotope-Filtered Affinity NMR J Magn Reson. 1998 Apr;131(2):336-8 Authors: Gonnella N, Lin M, Shapiro MJ, Wareing JR, Zhang X A double-editing pulse sequence has been developed that allows the direct observation of protein binding ligand(s) from a mixture of compounds. This technique should aid the discovery of lead pharmaceutical compounds. The proton NMR signals from protein and the nonbinding ligands are simultaneously eliminated using 13C isotope editing and PFG diffusion-edited NMR. This new...
nmrlearner Journal club 0 11-17-2010 11:06 PM
[NMR paper] Discovering high-affinity ligands for proteins: SAR by NMR.
Discovering high-affinity ligands for proteins: SAR by NMR. Related Articles Discovering high-affinity ligands for proteins: SAR by NMR. Science. 1996 Nov 29;274(5292):1531-4 Authors: Shuker SB, Hajduk PJ, Meadows RP, Fesik SW A nuclear magnetic resonance (NMR)-based method is described in which small organic molecules that bind to proximal subsites of a protein are identified, optimized, and linked together to produce high-affinity ligands. The approach is called "SAR by NMR" because structure-activity relationships (SAR) are obtained from...
nmrlearner Journal club 0 08-22-2010 02:20 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:40 AM.


Map