Aggregation of the Amyloid ? peptide into amyloid fibrils is closely related to development of Alzheimer's disease. Many small aromatic compounds have been found to act as inhibitors of fibril formation, and have inspired the search for new drug candidates. However, the detailed mechanisms of inhibition are largely unknown. In this study, we have examined in detail the binding of the fibril-formation inhibitor Congo Red (CR) to monomeric A?(1-40) using a combination of 1D, 2D, saturation transfer difference, and diffusion NMR, as well as dynamic light scattering experiments. Our results show that CR binds to the fibril forming stretches of A?(1-40) monomers, and that complex formation occurs in two steps: An initial 1:1 CR:A?(1-40) complex is formed by a relatively strong interaction (K(d) ? 5 ?M), and a 2:1 complex is formed by binding another CR molecule in a subsequent weaker binding step (K(d) ? 300 ?M). The size of these complexes is comparable to that of A?(1-40) alone. The existence of two different complexes might explain the contradictory reports regarding the inhibitory effects of CR on the fibril-formation process.
PMID: 21077638 [PubMed - as supplied by publisher]
Cracking the molecular weight barrier: Fragment screening of an aminotransferase using an NMR-based functional assay.
Cracking the molecular weight barrier: Fragment screening of an aminotransferase using an NMR-based functional assay.
Cracking the molecular weight barrier: Fragment screening of an aminotransferase using an NMR-based functional assay.
Bioorg Med Chem Lett. 2011 Jul 21;
Authors: Mendoza R, Petros AM, Liu Y, Thimmapaya R, Surowy CS, Leise WF, Pereda-Lopez A, Panchal SC, Sun C
NMR-based screening of protein targets has become a well established part of the drug discovery process especially with respect to fragments. However, as target size increases...
nmrlearner
Journal club
0
08-16-2011 01:19 PM
Alanine Methyl Groups as NMR Probes of Molecular Structure and Dynamics in High-Molecular-Weight Proteins
Alanine Methyl Groups as NMR Probes of Molecular Structure and Dynamics in High-Molecular-Weight Proteins
Raquel Godoy-Ruiz, Chenyun Guo and Vitali Tugarinov
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja1083656/aop/images/medium/ja-2010-083656_0009.gif
Journal of the American Chemical Society
DOI: 10.1021/ja1083656
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/hxZ4cabF688
nmrlearner
Journal club
0
12-08-2010 10:04 AM
[NMR paper] NMR assignments of a low molecular weight protein tyrosine phosphatase (PTPase) from
NMR assignments of a low molecular weight protein tyrosine phosphatase (PTPase) from Bacillus subtilis.
Related Articles NMR assignments of a low molecular weight protein tyrosine phosphatase (PTPase) from Bacillus subtilis.
J Biomol NMR. 2005 Apr;31(4):363
Authors: Xu H, Zhang P, Jin C
nmrlearner
Journal club
0
11-25-2010 08:21 PM
[NMR paper] Quantitative NMR studies of high molecular weight proteins: application to domain ori
Quantitative NMR studies of high molecular weight proteins: application to domain orientation and ligand binding in the 723 residue enzyme malate synthase G.
Related Articles Quantitative NMR studies of high molecular weight proteins: application to domain orientation and ligand binding in the 723 residue enzyme malate synthase G.
J Mol Biol. 2003 Apr 11;327(5):1121-33
Authors: Tugarinov V, Kay LE
A high-resolution multidimensional NMR study of ligand-binding to Escherichia coli malate synthase G (MSG), a 723-residue monomeric enzyme (81.4...
nmrlearner
Journal club
0
11-24-2010 09:01 PM
[NMR paper] Intramolecular dynamics of low molecular weight protein tyrosine phosphatase in monom
Intramolecular dynamics of low molecular weight protein tyrosine phosphatase in monomer-dimer equilibrium studied by NMR: a model for changes in dynamics upon target binding.
Related Articles Intramolecular dynamics of low molecular weight protein tyrosine phosphatase in monomer-dimer equilibrium studied by NMR: a model for changes in dynamics upon target binding.
J Mol Biol. 2002 Sep 6;322(1):137-52
Authors: Akerud T, Thulin E, Van Etten RL, Akke M
Low molecular weight protein tyrosine phosphatase (LMW-PTP) dimerizes in the phosphate-bound...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
[NMR paper] Study of wheat high molecular weight 1Dx5 subunit by (13)C and (1)H solid-state NMR.
Study of wheat high molecular weight 1Dx5 subunit by (13)C and (1)H solid-state NMR. II. Roles of nonrepetitive terminal domains and length of repetitive domain.
Related Articles Study of wheat high molecular weight 1Dx5 subunit by (13)C and (1)H solid-state NMR. II. Roles of nonrepetitive terminal domains and length of repetitive domain.
Biopolymers. 2002 Oct 15;65(2):158-68
Authors: Alberti E, Gilbert SM, Tatham AS, Shewry PR, Naito A, Okuda K, Saitô H, Gil AM
This work follows a previous article that addressed the role of disulfide bonds in...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
[NMR paper] Study of high molecular weight wheat glutenin subunit 1Dx5 by 13C and 1H solid-state
Study of high molecular weight wheat glutenin subunit 1Dx5 by 13C and 1H solid-state NMR spectroscopy. I. Role of covalent crosslinking.
Related Articles Study of high molecular weight wheat glutenin subunit 1Dx5 by 13C and 1H solid-state NMR spectroscopy. I. Role of covalent crosslinking.
Biopolymers. 2002;67(6):487-98
Authors: Alberti E, Gilbert SM, Tatham AS, Shewry PR, Gil AM
This work describes a carbon and proton solid-state NMR study of the hydration of a high molecular weight wheat glutenin subunit, 1Dx5. The effect of the presence of...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
[NMR paper] Backbone NMR assignments of a high molecular weight protein (47 kDa), cyclic AMP rece
Backbone NMR assignments of a high molecular weight protein (47 kDa), cyclic AMP receptor protein (apo-CRP)
Related Articles Backbone NMR assignments of a high molecular weight protein (47 kDa), cyclic AMP receptor protein (apo-CRP)
J Biomol NMR. 2000 Jan;16(1):79-80
Authors: Won HS, Yamazaki T, Lee TW, Jee JG, Yoon MK, Park SH, Otomo T, Aiba H, Kyogoku Y, Lee BJ