BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 01-11-2016, 03:57 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR reveals structural rearrangements associated to substrate insertion in nucleotide-adding enzymes.

NMR reveals structural rearrangements associated to substrate insertion in nucleotide-adding enzymes.

Related Articles NMR reveals structural rearrangements associated to substrate insertion in nucleotide-adding enzymes.

Protein Sci. 2016 Jan 8;

Authors: Mohanty B, Geralt M, Wüthrich K, Serrano P

Abstract
The protein NP_344798.1 from Streptococcus pneumoniae TIGR4 exhibits a head and base-interacting neck domain architecture, as observed in class II nucleotide-adding enzymes. Although it has less than 20% overall sequence identity with any member of this enzyme family, the residues involved in substrate-recognition and catalysis are highly conserved in NP_344798.1. NMR studies showed binding affinity of NP_344798.1 for nucleotides and revealed ?s to ms time scale rate processes involving residues constituting the active site. The results thus obtained indicate large-amplitude rearrangements of regular secondary structures facilitate the penetration of the substrate into the occluded nucleotide-binding site of NP_344798.1 and, by inference based on sequence and structural homology, probably a wide range of other nucleotide-adding enzymes. This article is protected by copyright. All rights reserved.


PMID: 26749007 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
NMR reveals structural rearrangements associated to substrate insertion in nucleotide-adding enzymes
NMR reveals structural rearrangements associated to substrate insertion in nucleotide-adding enzymes Abstract The protein NP_344798.1 from Streptococcus pneumoniae TIGR4 exhibits a head and base-interacting neck domain architecture, as observed in class II nucleotide-adding enzymes. Although it has less than 20% overall sequence identity with any member of this enzyme family, the residues involved in substrate-recognition and catalysis are highly conserved in NP_344798.1. NMR studies showed binding affinity of NP_344798.1 for nucleotides and revealed ?s to ms time scale rate processes...
nmrlearner Journal club 0 01-09-2016 04:06 PM
[NMR paper] NMR-based structural analysis of threonylcarbamoyl-AMP synthase and its substrate interactions.
NMR-based structural analysis of threonylcarbamoyl-AMP synthase and its substrate interactions. Related Articles NMR-based structural analysis of threonylcarbamoyl-AMP synthase and its substrate interactions. J Biol Chem. 2015 Jun 9; Authors: Harris KA, Bobay BG, Sarachan KL, Sims AF, Bilbille Y, Deutsch C, Iwata-Reuyl D, Agris PF Abstract The hypermodified nucleoside N(6)-threonylcarbamoyladenosine (t(6)A37) is present in many distinct tRNA species and has been found in organisms in all domains of life. This...
nmrlearner Journal club 0 06-11-2015 05:18 PM
[NMR paper] NMR structure of human restriction factor APOBEC3A reveals substrate binding and enzyme specificity.
NMR structure of human restriction factor APOBEC3A reveals substrate binding and enzyme specificity. Related Articles NMR structure of human restriction factor APOBEC3A reveals substrate binding and enzyme specificity. Nat Commun. 2013;4:1890 Authors: Byeon IJ, Ahn J, Mitra M, Byeon CH, Hercík K, Hritz J, Charlton LM, Levin JG, Gronenborn AM Abstract Human APOBEC3A is a single-stranded DNA cytidine deaminase that restricts viral pathogens and endogenous retrotransposons, and has a role in the innate immune response. Furthermore, its...
nmrlearner Journal club 0 05-23-2013 06:54 PM
Solution 1H NMR characterization of substrate-free C. diphtheriae heme oxygenase: pertinence for determining magnetic axes in paramagnetic substrate complexes.
Solution 1H NMR characterization of substrate-free C. diphtheriae heme oxygenase: pertinence for determining magnetic axes in paramagnetic substrate complexes. Solution 1H NMR characterization of substrate-free C. diphtheriae heme oxygenase: pertinence for determining magnetic axes in paramagnetic substrate complexes. J Inorg Biochem. 2010 Oct;104(10):1063-70 Authors: Du Z, Unno M, Matsui T, Ikeda-Saito M, La Mar GN Proton 2D NMR was used to confirm in solution a highly conserved portion of the molecular structure upon substrate loss for the...
nmrlearner Journal club 0 02-10-2011 03:51 PM
[NMR paper] NMR study of nucleotide-induced changes in the nucleotide binding domain of Thermus t
NMR study of nucleotide-induced changes in the nucleotide binding domain of Thermus thermophilus Hsp70 chaperone DnaK: implications for the allosteric mechanism. Related Articles NMR study of nucleotide-induced changes in the nucleotide binding domain of Thermus thermophilus Hsp70 chaperone DnaK: implications for the allosteric mechanism. J Biol Chem. 2004 Aug 6;279(32):33958-67 Authors: Revington M, Holder TM, Zuiderweg ER We present an NMR investigation of the nucleotide-dependent conformational properties of a 44-kDa nucleotide binding...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Investigating structural changes in the lipid bilayer upon insertion of the transmemb
Investigating structural changes in the lipid bilayer upon insertion of the transmembrane domain of the membrane-bound protein phospholamban utilizing 31P and 2H solid-state NMR spectroscopy. Related Articles Investigating structural changes in the lipid bilayer upon insertion of the transmembrane domain of the membrane-bound protein phospholamban utilizing 31P and 2H solid-state NMR spectroscopy. Biophys J. 2004 Mar;86(3):1564-73 Authors: Dave PC, Tiburu EK, Damodaran K, Lorigan GA Phospholamban (PLB) is a 52-amino acid integral membrane...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] Structural rearrangements of the two domains of Azotobacter vinelandii rhodanese upon
Structural rearrangements of the two domains of Azotobacter vinelandii rhodanese upon sulfane sulfur release: essential molecular dynamics, 15N NMR relaxation and deuterium exchange on the uniformly labeled protein. Related Articles Structural rearrangements of the two domains of Azotobacter vinelandii rhodanese upon sulfane sulfur release: essential molecular dynamics, 15N NMR relaxation and deuterium exchange on the uniformly labeled protein. Int J Biol Macromol. 2003 Dec;33(4-5):193-201 Authors: Cicero DO, Melino S, Orsale M, Brancato G, Amadei A,...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Proton NMR and structural features of a 24-nucleotide RNA hairpin.
Proton NMR and structural features of a 24-nucleotide RNA hairpin. Related Articles Proton NMR and structural features of a 24-nucleotide RNA hairpin. Biochemistry. 1995 May 16;34(19):6488-503 Authors: Borer PN, Lin Y, Wang S, Roggenbuck MW, Gott JM, Uhlenbeck OC, Pelczer I The three-dimensional conformation of a 24-nucleotide variant of the RNA binding sequence for the coat protein of bacteriophage R17 has been analyzed using NMR, molecular dynamics, and energy minimization. The imino proton spectrum is consistent with base pairing...
nmrlearner Journal club 0 08-22-2010 03:41 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:47 AM.


Map