Related ArticlesNMR relaxation studies on the hydrate layer of intrinsically unstructured proteins.
Biophys J. 2005 Mar;88(3):2030-7
Authors: Bokor M, Csizmók V, Kovács D, Bánki P, Friedrich P, Tompa P, Tompa K
Intrinsically unstructured/disordered proteins (IUPs) exist in a disordered and largely solvent-exposed, still functional, structural state under physiological conditions. As their function is often directly linked with structural disorder, understanding their structure-function relationship in detail is a great challenge to structural biology. In particular, their hydration and residual structure, both closely linked with their mechanism of action, require close attention. Here we demonstrate that the hydration of IUPs can be adequately approached by a technique so far unexplored with respect to IUPs, solid-state NMR relaxation measurements. This technique provides quantitative information on various features of hydrate water bound to these proteins. By freezing nonhydrate (bulk) water out, we have been able to measure free induction decays pertaining to protons of bound water from which the amount of hydrate water, its activation energy, and correlation times could be calculated. Thus, for three IUPs, the first inhibitory domain of calpastatin, microtubule-associated protein 2c, and plant dehydrin early responsive to dehydration 10, we demonstrate that they bind a significantly larger amount of water than globular proteins, whereas their suboptimal hydration and relaxation parameters are correlated with their differing modes of function. The theoretical treatment and experimental approach presented in this article may have general utility in characterizing proteins that belong to this novel structural class.
Real-Time NMR Studies of Electrochemical Double-Layer Capacitors
Real-Time NMR Studies of Electrochemical Double-Layer Capacitors
Hao Wang, Thomas K.-J. Ko?ster, Nicole M. Trease, Julie Se?galini, Pierre-Louis Taberna, Patrice Simon, Yury Gogotsi and Clare P. Grey
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja2072115/aop/images/medium/ja-2011-072115_0006.gif
Journal of the American Chemical Society
DOI: 10.1021/ja2072115
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/-UeWTD49pVw
nmrlearner
Journal club
0
11-12-2011 01:40 AM
Paramagnetic relaxation enhancement to improve sensitivity of fast NMR methods: application to intrinsically disordered proteins
Paramagnetic relaxation enhancement to improve sensitivity of fast NMR methods: application to intrinsically disordered proteins
Abstract We report enhanced sensitivity NMR measurements of intrinsically disordered proteins in the presence of paramagnetic relaxation enhancement (PRE) agents such as Ni2+-chelated DO2A. In proton-detected 1H-15N SOFAST-HMQC and carbon-detected (H-flip)13CO-15N experiments, faster longitudinal relaxation enables the usage of even shorter interscan delays. This results in higher NMR signal intensities per units of experimental time, without adverse line...
nmrlearner
Journal club
0
10-21-2011 10:04 PM
The calponin regulatory region is intrinsically unstructured: novel insight into actin-calponin and calmodulin-calponin interfaces using NMR spectroscopy.
The calponin regulatory region is intrinsically unstructured: novel insight into actin-calponin and calmodulin-calponin interfaces using NMR spectroscopy.
The calponin regulatory region is intrinsically unstructured: novel insight into actin-calponin and calmodulin-calponin interfaces using NMR spectroscopy.
Biophys J. 2011 Apr 6;100(7):1718-28
Authors: Pfuhl M, Al-Sarayreh S, El-Mezgueldi M
Calponin is an actin- and calmodulin-binding protein believed to regulate the function of actin. Low-resolution studies based on proteolysis established that...
nmrlearner
Journal club
0
04-06-2011 10:54 AM
5D 13C-detected experiments for backbone assignment of unstructured proteins with a very low signal dispersion
5D 13C-detected experiments for backbone assignment of unstructured proteins with a very low signal dispersion
Abstract Two novel 5D NMR experiments (CACONCACO, NCOCANCO) for backbone assignment of disordered proteins are presented. The pulse sequences exploit relaxation properties of the unstructured proteins and combine the advantages of 13C-direct detection, non-uniform sampling, and longitudinal relaxation optimization to maximize the achievable resolution and minimize the experimental time. The pulse sequences were successfully tested on the sample of partially disordered delta...
nmrlearner
Journal club
0
03-22-2011 07:32 PM
ncIDP-assign: A SPARKY extension for the effective NMR assignment of intrinsically disordered proteins.
ncIDP-assign: A SPARKY extension for the effective NMR assignment of intrinsically disordered proteins.
ncIDP-assign: A SPARKY extension for the effective NMR assignment of intrinsically disordered proteins.
Bioinformatics. 2011 Mar 3;
Authors: Tamiola K, Mulder FA
SUMMARY: We describe here the ncIDP-assign extension for the popular NMR assignment programme SPARKY, which aids in the sequence-specific resonance assignment of intrinsically disordered proteins (IDPs). The assignment plugin greatly facilitates the effective matching of a set of...
nmrlearner
Journal club
0
03-05-2011 01:02 PM
Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH
Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH
Abstract Secondary chemical shift analysis is the main NMR method for detection of transiently formed secondary structure in intrinsically disordered proteins. The quality of the secondary chemical shifts is dependent on an appropriate choice of random coil chemical shifts. We report random coil chemical shifts and sequence correction factors determined for a GGXGG peptide series following the approach of Schwarzinger et al. (J Am Chem Soc 123(13):2970â??2978, 2001). The chemical shifts are...
nmrlearner
Journal club
0
01-17-2011 02:40 AM
[NMR paper] Thermodynamic insights into proteins from NMR spin relaxation studies.
Thermodynamic insights into proteins from NMR spin relaxation studies.
Related Articles Thermodynamic insights into proteins from NMR spin relaxation studies.
Curr Opin Struct Biol. 2001 Oct;11(5):555-9
Authors: Spyracopoulos L, Sykes BD
NMR spin relaxation measurements of picosecond to nanosecond timescale backbone and sidechain fluctuations of protein molecules, and subsequent entropic interpretation yield interesting, but sometimes counterintuitive, insights into proteins. The stabilities of proteins and protein interactions are achieved...
nmrlearner
Journal club
0
11-19-2010 08:44 PM
[NMR paper] NMR studies of Borrelia burgdorferi OspA, a 28 kDa protein containing a single-layer
NMR studies of Borrelia burgdorferi OspA, a 28 kDa protein containing a single-layer beta-sheet.
Related Articles NMR studies of Borrelia burgdorferi OspA, a 28 kDa protein containing a single-layer beta-sheet.
J Biomol NMR. 1998 May;11(4):407-14
Authors: Pham TN, Koide S
The crystal structure of outer surface protein A (OspA) from Borrelia burgdorferi contains a single-layer beta-sheet connecting the N- and C-terminal globular domains. The central beta-sheet consists largely of polar amino acids and it is solvent-exposed on both faces, which...