NMR Provides a Quantitative Description of Protein Conformational Flexibility on Physiologically Important Timescales.
Biochemistry. 2011 Mar 9;
Authors: Salmon L, Bouvignies G, Markwick PR, Blackledge M
A complete description of biomolecular activity requires an understanding of the nature and the role of protein conformational dynamics. In recent years novel NMR-based techniques have emerged that provide hitherto inaccessible detail concerning biomolecular motions occurring on physiologically important timescales. Residual dipolar couplings (RDCs) provide precise information about time and ensemble averaged structural and dynamic processes with correlations times up to the millisecond, and thereby encode key information for understanding biological activity. In this review we present the application of two very different approaches to the quantitative description of protein motion using RDCs. The first is purely analytical, describing backbone dynamics in terms of diffusive motions of each peptide plane, using extensive statistical analysis to validate the proposed dynamic modes. The second is based on restraint-free accelerated molecular dynamics simulation, providing statistically sampled free-energy weighted ensembles that describe conformational fluctuations occurring on timescales from the pico to the millisecond, at atomic resolution. Remarkably the results from these two approaches converge closely in terms of distribution and absolute amplitude of motions, suggesting that this kind of combination of analytical and numerical models is now capable of providing a unified description of protein conformational dynamics in solution.
PMID: 21388216 [PubMed - as supplied by publisher]
Conformational analysis by quantitative NOE measurements of the β-proton pairs across individual disulfide bonds in proteins
Conformational analysis by quantitative NOE measurements of the β-proton pairs across individual disulfide bonds in proteins
Abstract NOEs between the β-protons of cysteine residues across disulfide bonds in proteins provide direct information on the connectivities and conformations of these important cross-links, which are otherwise difficult to investigate. With conventional -proteins, however, fast spin diffusion processes mediated by strong dipolar interactions between geminal β-protons prohibit the quantitative measurements and thus the analyses of long-range NOEs across...
[NMR paper] Phosphorylation and flexibility of cyclic-AMP-dependent protein kinase (PKA) using (3
Phosphorylation and flexibility of cyclic-AMP-dependent protein kinase (PKA) using (31)P NMR spectroscopy.
Related Articles Phosphorylation and flexibility of cyclic-AMP-dependent protein kinase (PKA) using (31)P NMR spectroscopy.
Biochemistry. 2002 May 14;41(19):5968-77
Authors: Seifert MH, Breitenlechner CB, Bossemeyer D, Huber R, Holak TA, Engh RA
Cell signaling pathways rely on phosphotransfer reactions that are catalyzed by protein kinases. The protein kinases themselves are typically regulated by phosphorylation and concurrent structural...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
[NMR paper] Simulated and NMR-derived backbone dynamics of a protein with significant flexibility
Simulated and NMR-derived backbone dynamics of a protein with significant flexibility: a comparison of spectral densities for the betaARK1 PH domain.
Related Articles Simulated and NMR-derived backbone dynamics of a protein with significant flexibility: a comparison of spectral densities for the betaARK1 PH domain.
J Am Chem Soc. 2001 Apr 4;123(13):3021-36
Authors: Pfeiffer S, Fushman D, Cowburn D
A 7.6 ns molecular dynamics trajectory of the betaARK1 PH domain in explicit water with appropriate ions was calculated at 300 K. Spectral densities...
nmrlearner
Journal club
0
11-19-2010 08:32 PM
A quantitative NMR spectroscopic examination of the flexibility of the C-terminal ext
A quantitative NMR spectroscopic examination of the flexibility of the C-terminal extensions of the molecular chaperones, alphaA- and alphaB-crystallin.
Related Articles A quantitative NMR spectroscopic examination of the flexibility of the C-terminal extensions of the molecular chaperones, alphaA- and alphaB-crystallin.
Exp Eye Res. 2010 Aug 20;
Authors: Treweek TM, Rekas A, Walker MJ, Carver JA
The principal lens proteins alphaA- and alphaB-crystallin are members of the small heat-shock protein (sHsp) family of molecular chaperone proteins. Via...
nmrlearner
Journal club
0
08-25-2010 02:04 PM
Application of the random coil index to studying protein flexibility
Application of the random coil index to studying protein flexibility
Mark V. Berjanskii and David S. Wishart
Journal of Biomolecular NMR; 2008; 40(1); pp 31-48
Abstract:
Protein flexibility lies at the heart of many protein–ligand binding events and enzymatic activities. However, the experimental measurement of protein motions is often difficult, tedious and error-prone. As a result, there is a considerable interest in developing simpler and faster ways of quantifying protein flexibility. Recently, we described a method, called Random Coil Index (RCI), which appears to be able to...