Authors: Pedrini B, Serrano P, Mohanty B, Geralt M, Wüthrich K
Abstract
NMR-Profiles are quantitative one-dimensional presentations of two-dimensional [(15) N,(1) H]-correlation spectra used to monitor the quality of protein solutions prior to and during NMR structure determinations and functional studies. In our current use in structural genomics projects, a NMR-Profile is recorded at the outset of a structure determination, using a uniformly (15) N-labeled micro-scale sample of the protein. We thus assess the extent to which polypeptide backbone resonance assignments can be achieved with given NMR techniques, for example, conventional triple resonance experiments or APSY-NMR. With the availability of sequence-specific polypeptide backbone resonance assignments in the course of the structure determination, an "Assigned NMR-Profile" is generated, which visualizes the variation of the (15) N-(1) H correlation cross peak intensities along the sequence and thus maps the sequence locations of polypeptide segments for which the NMR line shapes are affected by conformational exchange or other processes. The Assigned NMR-Profile provides a guiding reference during later stages of the structure determination, and is of special interest for monitoring the protein during functional studies, where dynamic features may be modulated during physiological functions.
PMID: 23839514 [PubMed - as supplied by publisher]
[NMR paper] Protein backbone structure determination using RDC: An inverse kinematics approach with fast and exact solutions
From Mendeley Biomolecular NMR group:
Protein backbone structure determination using RDC: An inverse kinematics approach with fast and exact solutions
International Journal of Quantum Chemistry (2013). Volume: 113, Issue: 8. Pages: 1095-1106. Sotirios I. Pantos, Ekaterini Tiligada et al.
Published using Mendeley: The research tool for desktop & web
nmrlearner
Journal club
0
04-11-2013 03:08 PM
Structure, Dynamics, and Kinetics of Weak Protein-Protein Complexes from NMR Spin Relaxation Measurements of Titrated Solutions.
Structure, Dynamics, and Kinetics of Weak Protein-Protein Complexes from NMR Spin Relaxation Measurements of Titrated Solutions.
Structure, Dynamics, and Kinetics of Weak Protein-Protein Complexes from NMR Spin Relaxation Measurements of Titrated Solutions.
Angew Chem Int Ed Engl. 2011 Mar 18;
Authors: Salmon L, Ortega Roldan JL, Lescop E, Licinio A, van Nuland N, Jensen MR, Blackledge M
nmrlearner
Journal club
0
03-23-2011 05:41 PM
Metabolic profiles show specific mitochondrial toxicities in vitro in myotube cells
Metabolic profiles show specific mitochondrial toxicities in vitro in myotube cells
Abstract Mitochondrial toxicity has been a serious concern, not only in preclinical drug development but also in clinical trials. In mitochondria, there are several distinct metabolic processes including fatty acid β-oxidation, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS), and each process contains discrete but often intimately linked steps. Interruption in any one of those steps can cause mitochondrial dysfunction. Detection of inhibition to OXPHOS can be complicated in...
nmrlearner
Journal club
0
03-03-2011 02:06 AM
[U. of Ottawa NMR Facility Blog] Excitation Profiles for Shaped Pulses
Excitation Profiles for Shaped Pulses
Shaped pulses are very commonly used for selective excitation and nonselective inversion in a large number of NMR pulse sequences. The frequency domain excitation profile of a radio frequency pulse is the Fourier transform of the time dependent pulse shape and determines the width, uniformity and phase of the frequency spectrum excited. Since time and frequency are reciprocals of one another, short rf pulses have very wide excitation profiles and long rf pulses have very narrow selective excitation profiles. In a previous BLOG post the excitation...
nmrlearner
News from NMR blogs
0
01-21-2011 03:31 AM
High-resolution protein structure determination starting with a global fold calculated from exact solutions to the RDC equations
High-resolution protein structure determination starting with a global fold calculated from exact solutions to the RDC equations
Abstract We present a novel structure determination approach that exploits the global orientational restraints from RDCs to resolve ambiguous NOE assignments. Unlike traditional approaches that bootstrap the initial fold from ambiguous NOE assignments, we start by using RDCs to compute accurate secondary structure element (SSE) backbones at the beginning of structure calculation. Our structure determination package, called rdc-Panda (RDC-based SSE PAcking with...
nmrlearner
Journal club
0
01-09-2011 12:46 PM
[NMR paper] NMR relaxation and water self-diffusion studies in whey protein solutions and gels.
NMR relaxation and water self-diffusion studies in whey protein solutions and gels.
Related Articles NMR relaxation and water self-diffusion studies in whey protein solutions and gels.
J Agric Food Chem. 2005 Aug 24;53(17):6784-90
Authors: Colsenet R, Mariette F, Cambert M
The changes in water proton transverse relaxation behavior induced by aggregation of whey proteins are explained in terms of the simple molecular processes of diffusion and chemical exchange. The water self-diffusion coefficient was measured in whey protein solutions and...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Sources of and solutions to problems in the refinement of protein NMR structures agai
Sources of and solutions to problems in the refinement of protein NMR structures against torsion angle potentials of mean force.
Related Articles Sources of and solutions to problems in the refinement of protein NMR structures against torsion angle potentials of mean force.
J Magn Reson. 2000 Oct;146(2):249-54
Authors: Kuszewski J, Clore GM
It is often the case that a substantial number of torsion angles (both backbone and sidechain) in structures of proteins and nucleic acids determined by NMR are found in physically unlikely and...
nmrlearner
Journal club
0
11-19-2010 08:29 PM
Water-Proton-Spin-Lattice-Relaxation Dispersion of Paramagnetic Protein Solutions
Water-Proton-Spin-Lattice-Relaxation Dispersion of Paramagnetic Protein Solutions
Publication year: 2010
Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 10 November 2010</br>
Galina, Diakova , Yanina, Goddard , Jean-Pierre, Korb , Robert G., Bryant</br>
The paramagnetic contributions to water proton spin-lattice relaxation rate constants in protein systems spin-labeled with nitroxide radicals were re-examined. As noted by others, the strength of the dipolar coupling between water protons and the protein-bound nitroxide radical often appears to...