BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 06-02-2018, 12:51 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR probing of invisible excited states using selectively labeled RNAs

NMR probing of invisible excited states using selectively labeled RNAs

Abstract

Carrâ??Purcellâ??Meiboomâ??Gill (CPMG) relaxation dispersion NMR experiments are invaluable for probing sparsely and transiently populated biomolecular states that cannot be directly detected by traditional NMR experiments and that are invisible by other biophysical approaches. A notable gap for RNA is the absence of CPMG experiments for measurement of methine base 1H and methylene C5â?˛ chemical shifts of ribose moieties in the excited state, partly because of complications from homonuclear 13Câ??13C scalar couplings. Here we present site-specific 13C labeling that makes possible the design of pulse sequences for recording accurate 1Hâ??13C MQ and SQ CPMG experiments for ribose methine H1â?˛â??C1â?˛ and H2â?˛â??C2â?˛, base and ribose 1H CPMG, as well as a new 1Hâ??13C TROSY-detected methylene (CH2) C5â?˛ CPMG relaxation pulse schemes. We demonstrate the utility of these experiments for two RNAs, the A-Site RNA known to undergo exchange and the IRE RNA suspected of undergoing exchange on microseconds to millisecond time-scale. We anticipate the new labeling approaches will facilitate obtaining structures of invisible states and provide insights into the relevance of such states for RNA-drug interactions.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Probing the Conformationally Excited States of Membrane Proteins via (1)H-detected MAS Solid-State NMR Spectroscopy.
Probing the Conformationally Excited States of Membrane Proteins via (1)H-detected MAS Solid-State NMR Spectroscopy. Probing the Conformationally Excited States of Membrane Proteins via (1)H-detected MAS Solid-State NMR Spectroscopy. J Phys Chem B. 2017 Apr 13;: Authors: Gopinath T, Nelson SE, Soller KJ, Veglia G Abstract Proteins exist in ensembles of conformational states that interconvert on various motional time scales. High-energy states of proteins, often referred to as conformationally excited states, are sparsely...
nmrlearner Journal club 0 04-14-2017 10:27 AM
[NMR paper] Studying "Invisible" Excited Protein States in Slow Exchange with a Major State Conformation.
From Mendeley Biomolecular NMR group: Studying "Invisible" Excited Protein States in Slow Exchange with a Major State Conformation. Journal of the American Chemical Society (2012). Pramodh Vallurupalli, Guillaume Bouvignies, Lewis E Kay et al. Ever since its initial development, solution NMR spectroscopy has been used as a tool to study conformational exchange. Although many systems are amenable to relaxation dispersion approaches, cases involving highly skewed populations in slow chemical exchange have, in general, remained recalcitrant to study. Here an experiment to detect and...
nmrlearner Journal club 0 10-17-2013 12:49 PM
[NMR paper] Studying "Invisible" Excited Protein States in Slow Exchange with a Major State Conformation.
From Mendeley Biomolecular NMR group: Studying "Invisible" Excited Protein States in Slow Exchange with a Major State Conformation. Journal of the American Chemical Society (2012). Pramodh Vallurupalli, Guillaume Bouvignies, Lewis E Kay et al. Ever since its initial development, solution NMR spectroscopy has been used as a tool to study conformational exchange. Although many systems are amenable to relaxation dispersion approaches, cases involving highly skewed populations in slow chemical exchange have, in general, remained recalcitrant to study. Here an experiment to detect and...
nmrlearner Journal club 0 11-12-2012 01:53 AM
[NMR paper] Studying "Invisible" Excited Protein States in Slow Exchange with a Major State Conformation.
From Mendeley Biomolecular NMR group: Studying "Invisible" Excited Protein States in Slow Exchange with a Major State Conformation. Journal of the American Chemical Society (2012). Pramodh Vallurupalli, Guillaume Bouvignies, Lewis E Kay et al. Ever since its initial development, solution NMR spectroscopy has been used as a tool to study conformational exchange. Although many systems are amenable to relaxation dispersion approaches, cases involving highly skewed populations in slow chemical exchange have, in general, remained recalcitrant to study. Here an experiment to detect and...
nmrlearner Journal club 0 10-12-2012 09:58 AM
[NMR paper] Studying "Invisible" Excited Protein States in Slow Exchange with a Major State Conformation.
From Mendeley Biomolecular NMR group: Studying "Invisible" Excited Protein States in Slow Exchange with a Major State Conformation. Journal of the American Chemical Society (2012). Pramodh Vallurupalli, Guillaume Bouvignies, Lewis E Kay et al. Ever since its initial development, solution NMR spectroscopy has been used as a tool to study conformational exchange. Although many systems are amenable to relaxation dispersion approaches, cases involving highly skewed populations in slow chemical exchange have, in general, remained recalcitrant to study. Here an experiment to detect and...
nmrlearner Journal club 0 08-24-2012 08:01 PM
[NMR paper] Reconstructing NMR spectra of "invisible" excited protein states using HSQC and HMQC
Reconstructing NMR spectra of "invisible" excited protein states using HSQC and HMQC experiments. Related Articles Reconstructing NMR spectra of "invisible" excited protein states using HSQC and HMQC experiments. J Am Chem Soc. 2002 Oct 16;124(41):12352-60 Authors: Skrynnikov NR, Dahlquist FW, Kay LE Carr-Purcell-Meiboom-Gill (CPMG) relaxation measurements employing trains of 180 degrees pulses with variable pulse spacing provide valuable information about systems undergoing millisecond-time-scale chemical exchange. Fits of the CPMG relaxation...
nmrlearner Journal club 0 11-24-2010 08:58 PM
Measurement of carbonyl chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy: comparison between uniformly and selectively 13C labeled samples
Measurement of carbonyl chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy: comparison between uniformly and selectively 13C labeled samples Patrik Lundström, D. Flemming Hansen and Lewis E. Kay Journal of Biomolecular NMR; 2008; 42(1); pp 35 - 47 Abstract: Carr–Purcell–Meiboom–Gill (CPMG) relaxation dispersion nuclear magnetic resonance (NMR) spectroscopy has emerged as a powerful method for quantifying chemical shifts of excited protein states. For many applications of the technique that involve the measurement of relaxation rates of carbon...
Abe Journal club 0 09-21-2008 11:36 PM
Using relaxation dispersion NMR spectroscopy to determine structures of excited, invisible protein states
Using relaxation dispersion NMR spectroscopy to determine structures of excited, invisible protein states D. Flemming Hansen, Pramodh Vallurupalli and Lewis E. Kay Journal of Biomolecular NMR; 2008; 41(3); pp 113 - 120 Abstract: Currently the main focus of structural biology is the determination of static three-dimensional representations of biomolecules that for the most part correspond to low energy (ground state) conformations. However, it is becoming increasingly well recognized that higher energy structures often play important roles in function as well. Because these conformers...
daniel Journal club 0 08-03-2008 03:16 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:22 PM.


Map