[NMR paper] NMR Methods for the Study of Instrinsically Disordered Proteins Structure, Dynamics, and Interactions: General Overview and Practical Guidelines.
Related ArticlesNMR Methods for the Study of Instrinsically Disordered Proteins Structure, Dynamics, and Interactions: General Overview and Practical Guidelines.
Adv Exp Med Biol. 2015;870:49-122
Authors: Brutscher B, Felli IC, Gil-Caballero S, Hošek T, Kümmerle R, Piai A, Pierattelli R, Sólyom Z
Abstract
Thanks to recent improvements in NMR instrumentation, pulse sequence design, and sample preparation, a panoply of new NMR tools has become available for atomic resolution characterization of intrinsically disordered proteins (IDPs) that are optimized for the particular chemical and spectroscopic properties of these molecules. A wide range of NMR observables can now be measured on increasingly complex IDPs that report on their structural and dynamic properties in isolation, as part of a larger complex, or even inside an entire living cell. Herein we present basic NMR concepts, as well as optimised tools available for the study of IDPs in solution. In particular, the following sections are discussed hereafter: a short introduction to NMR spectroscopy and instrumentation (Sect. 3.1), the effect of order and disorder on NMR observables (Sect. 3.2), particular challenges and bottlenecks for NMR studies of IDPs (Sect. 3.3), 2D HN and CON NMR experiments: the fingerprint of an IDP (Sect. 3.4), tools for overcoming major bottlenecks of IDP NMR studies (Sect. 3.5), (13)C detected experiments (Sect. 3.6), from 2D to 3D: from simple snapshots to site-resolved characterization of IDPs (Sect. 3.7), sequential NMR assignment: 3D experiments (Sect. 3.8), high-dimensional NMR experiments (nD, with n > 3) (Sect. 3.9) and conclusions and perspectives (Sect. 3.10).
PMID: 26387100 [PubMed - as supplied by publisher]
[NMR paper] Novel methods based on 13C detection to study intrinsically disordered proteins
Novel methods based on 13C detection to study intrinsically disordered proteins
Publication date: April 2014
Source:Journal of Magnetic Resonance, Volume 241</br>
Author(s): Isabella C. Felli , Roberta Pierattelli</br>
Intrinsically disordered proteins (IDPs) are characterized by highly flexible solvent exposed backbones and can sample many different conformations. These properties confer them functional advantages, complementary to those of folded proteins, which need to be characterized to expand our view of how protein structural and dynamic features affect...
nmrlearner
Journal club
0
03-22-2014 01:28 AM
[NMR paper] Generating NMR Chemical Shift Assignments of Intrinsically Disordered Proteins Using Carbon-Detect NMR Methods.
Generating NMR Chemical Shift Assignments of Intrinsically Disordered Proteins Using Carbon-Detect NMR Methods.
Related Articles Generating NMR Chemical Shift Assignments of Intrinsically Disordered Proteins Using Carbon-Detect NMR Methods.
Anal Biochem. 2013 Dec 9;
Authors: Sahu D, Bastidas M, Showalter S
Abstract
There is an extraordinary need to describe the structures of intrinsically disordered proteins (IDPs) due to their role in various biological processes involved in signaling and transcription. However, general study of IDPs...
nmrlearner
Journal club
0
12-18-2013 04:00 PM
Generating NMR Chemical Shift Assignments of Intrinsically Disordered Proteins Using Carbon-Detect NMR Methods
Generating NMR Chemical Shift Assignments of Intrinsically Disordered Proteins Using Carbon-Detect NMR Methods
Publication date: Available online 10 December 2013
Source:Analytical Biochemistry</br>
Author(s): Debashish Sahu , Monique Bastidas , Scott Showalter</br>
There is an extraordinary need to describe the structures of intrinsically disordered proteins (IDPs) due to their role in various biological processes involved in signaling and transcription. However, general study of IDPs by NMR spectroscopy is limited by the poor 1H-amide chemical shift dispersion...
Paramagnetic relaxation enhancement to improve sensitivity of fast NMR methods: application to intrinsically disordered proteins
Paramagnetic relaxation enhancement to improve sensitivity of fast NMR methods: application to intrinsically disordered proteins
Abstract We report enhanced sensitivity NMR measurements of intrinsically disordered proteins in the presence of paramagnetic relaxation enhancement (PRE) agents such as Ni2+-chelated DO2A. In proton-detected 1H-15N SOFAST-HMQC and carbon-detected (H-flip)13CO-15N experiments, faster longitudinal relaxation enables the usage of even shorter interscan delays. This results in higher NMR signal intensities per units of experimental time, without adverse line...
nmrlearner
Journal club
0
10-21-2011 10:04 PM
Methanol Strengthens Hydrogen Bonds and Weakens Hydrophobic Interactions in Proteins - A Combined Molecular Dynamics and NMR study.
Methanol Strengthens Hydrogen Bonds and Weakens Hydrophobic Interactions in Proteins - A Combined Molecular Dynamics and NMR study.
Methanol Strengthens Hydrogen Bonds and Weakens Hydrophobic Interactions in Proteins - A Combined Molecular Dynamics and NMR study.
J Phys Chem B. 2011 May 2;
Authors: Hwang S, Shao Q, Williams H, Hilty C, Gao YQ
A combined simulation and experimental study was performed to investigate how methanol affects the structure of a model peptide BBA5. BBA5 forms a stable ?-hairpin-?-helix structure in aqueous solutions....
nmrlearner
Journal club
0
05-04-2011 04:14 PM
[NMR paper] General framework for studying the dynamics of folded and nonfolded proteins by NMR r
General framework for studying the dynamics of folded and nonfolded proteins by NMR relaxation spectroscopy and MD simulation.
Related Articles General framework for studying the dynamics of folded and nonfolded proteins by NMR relaxation spectroscopy and MD simulation.
J Am Chem Soc. 2002 Apr 24;124(16):4522-34
Authors: Prompers JJ, Brüschweiler R
A general framework is presented for the interpretation of NMR relaxation data of proteins. The method, termed isotropic reorientational eigenmode dynamics (iRED), relies on a principal component...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
Using NMR to study fast dynamics in proteins: methods and applications.
Using NMR to study fast dynamics in proteins: methods and applications.
Related Articles Using NMR to study fast dynamics in proteins: methods and applications.
Curr Opin Pharmacol. 2010 Oct 6;
Authors: Sapienza PJ, Lee AL
Proteins exist not as singular structures with precise coordinates, but rather as fluctuating bodies that move rapidly through an enormous number of conformational substates. These dynamics have important implications for understanding protein function and for structure-based drug design. NMR spectroscopy is particularly well...