BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 12-31-2017, 10:41 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR Methods for Identification of False Positives in Biochemical Screens.

NMR Methods for Identification of False Positives in Biochemical Screens.

Related Articles NMR Methods for Identification of False Positives in Biochemical Screens.

J Med Chem. 2017 Dec 14;60(23):9437-9447

Authors: Zega A

Abstract
Over the past few decades, NMR spectroscopy has become an established tool in drug discovery. This communication will highlight the potential of NMR spectroscopy as a method for identification of problematic compounds and as a valuable aid toward revealing some mechanisms of promiscuous behavior. NMR methods for detecting false positives will be analyzed on the basis of their performance, strengths, limitations, and potential pitfalls. Additionally, this communication aims to provide an insight into the limitations of NMR-based methodologies applied to ligand screening in the context of false-positive hits.


PMID: 28657735 [PubMed - indexed for MEDLINE]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] NMRmix: A Tool for the Optimization of Compound Mixtures in 1D (1)H NMR Ligand Affinity Screens.
NMRmix: A Tool for the Optimization of Compound Mixtures in 1D (1)H NMR Ligand Affinity Screens. Related Articles NMRmix: A Tool for the Optimization of Compound Mixtures in 1D (1)H NMR Ligand Affinity Screens. J Proteome Res. 2016 Mar 11; Authors: Stark JL, Eghbalnia HR, Lee W, Westler WM, Markley JL Abstract NMR ligand affinity screening is a powerful technique that is routinely used in drug discovery or functional genomics to directly detect protein-ligand binding events. Binding events can be identified by monitoring...
nmrlearner Journal club 0 03-12-2016 01:58 PM
Biochemical Methods To Investigate lncRNA and the Influence of lncRNA:ProteinComplexes on Chromatin
Biochemical Methods To Investigate lncRNA and the Influence of lncRNA:ProteinComplexes on Chromatin http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.5b01141/20160224/images/medium/bi-2015-011416_0009.gif Biochemistry DOI: 10.1021/acs.biochem.5b01141 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/QyWQirFHzWc More...
nmrlearner Journal club 0 02-25-2016 05:21 AM
[NMR paper] Statistical removal of background signals from high-throughput (1)H NMR line-broadening ligand-affinity screens.
Statistical removal of background signals from high-throughput (1)H NMR line-broadening ligand-affinity screens. Statistical removal of background signals from high-throughput (1)H NMR line-broadening ligand-affinity screens. J Biomol NMR. 2015 Jul 9; Authors: Worley B, Sisco NJ, Powers R Abstract NMR ligand-affinity screens are vital to drug discovery, are routinely used to screen fragment-based libraries, and used to verify chemical leads from high-throughput assays and virtual screens. NMR ligand-affinity screens are...
nmrlearner Journal club 0 07-12-2015 07:12 AM
Statistical removal of background signals from high-throughput 1 H NMR line-broadening ligand-affinity screens
Statistical removal of background signals from high-throughput 1 H NMR line-broadening ligand-affinity screens Abstract NMR ligand-affinity screens are vital to drug discovery, are routinely used to screen fragment-based libraries, and used to verify chemical leads from high-throughput assays and virtual screens. NMR ligand-affinity screens are also a highly informative first step towards identifying functional epitopes of unknown proteins, as well as elucidating the biochemical functions of proteinā??ligand interaction at their binding interfaces....
nmrlearner Journal club 0 07-08-2015 11:11 PM
[BMNRC community] Biochemical Applications of NMR Spectroscopy
Biochemical Applications of NMR Spectroscopy http://www.bioc.aecom.yu.edu/labs/girvlab/nmr/course/syllabus.html By The Girvin Lab @ Department of Biochemistry at the Albert Einstein College of Medicine
nmrlearner News from other NMR forums 0 07-22-2011 10:38 AM
[NMR paper] ALARM NMR: a rapid and robust experimental method to detect reactive false positives
ALARM NMR: a rapid and robust experimental method to detect reactive false positives in biochemical screens. Related Articles ALARM NMR: a rapid and robust experimental method to detect reactive false positives in biochemical screens. J Am Chem Soc. 2005 Jan 12;127(1):217-24 Authors: Huth JR, Mendoza R, Olejniczak ET, Johnson RW, Cothron DA, Liu Y, Lerner CG, Chen J, Hajduk PJ High-throughput screening (HTS) of large compound collections typically results in numerous small molecule hits that must be carefully evaluated to identify valid drug...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] Biochemical characterization and NMR studies of the nucleotide-binding domain 1 of mu
Biochemical characterization and NMR studies of the nucleotide-binding domain 1 of multidrug-resistance-associated protein 1: evidence for interaction between ATP and Trp653. Related Articles Biochemical characterization and NMR studies of the nucleotide-binding domain 1 of multidrug-resistance-associated protein 1: evidence for interaction between ATP and Trp653. Biochem J. 2003 Dec 15;376(Pt 3):749-56 Authors: Ramaen O, Masscheleyn S, Duffieux F, Pamlard O, Oberkampf M, Lallemand JY, Stoven V, Jacquet E Multidrug-resistance-associated...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] An RBD that does not bind RNA: NMR secondary structure determination and biochemical
An RBD that does not bind RNA: NMR secondary structure determination and biochemical properties of the C-terminal RNA binding domain from the human U1A protein. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles An RBD that does not bind RNA: NMR secondary structure determination and biochemical properties of the C-terminal RNA binding domain from the human U1A protein. J Mol Biol. 1995 Apr 7;247(4):739-52 Authors: Lu J, Hall KB We have obtained backbone 1H, 15N, and 13C...
nmrlearner Journal club 0 08-22-2010 03:41 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:12 AM.


Map