BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 01-01-2014, 03:05 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR metabolomics profiling of blood plasma mimics shows that medium- and long-chain fatty acids differently release metabolites from human serum albumin.

NMR metabolomics profiling of blood plasma mimics shows that medium- and long-chain fatty acids differently release metabolites from human serum albumin.

Related Articles NMR metabolomics profiling of blood plasma mimics shows that medium- and long-chain fatty acids differently release metabolites from human serum albumin.

J Magn Reson. 2013 Dec 12;239C:34-43

Authors: Jupin M, Michiels PJ, Girard FC, Spraul M, Wijmenga SS

Abstract
Metabolite profiling by NMR of body fluids is increasingly used to successfully differentiate patients from healthy individuals. Metabolites and their concentrations are direct reporters of body biochemistry. However, in blood plasma the NMR-detected free-metabolite concentrations are also strongly affected by interactions with the abundant plasma proteins, which have as of yet not been considered much in metabolic profiling. We previously reported that many of the common NMR-detected metabolites in blood plasma bind to human serum albumin (HSA) and many are released by fatty acids present in fatted HSA. HSA is the most abundant plasma protein and main transporter of endogenous and exogenous metabolites. Here, we show by NMR how the two most common fatty acids (FAs) in blood plasma - the long-chain FA, stearate (C18:0) and medium-chain FA, myristate (C14:0) - affect metabolite-HSA interaction. Of the set of 18 common NMR-detected metabolites, many are released by stearate and/or myristate, lactate appearing the most strongly affected. Myristate, but not stearate, reduces HSA-binding of phenylalanine and pyruvate. Citrate signals were NMR invisible in the presence of HSA. Only at high myristate-HSA mole ratios 11:1, is citrate sufficiently released to be detected. Finally, we find that limited dilution of blood-plasma mimics releases HSA-bound metabolites, a finding confirmed in real blood plasma samples. Based on these findings, we provide recommendations for NMR experiments for quantitative metabolite profiling.


PMID: 24374750 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] NMR Metabolomics Profiling of Blood Plasma Mimics shows that Medium- and Long-chain Fatty Acids Differently Release Metabolites from Human Serum Albumin
NMR Metabolomics Profiling of Blood Plasma Mimics shows that Medium- and Long-chain Fatty Acids Differently Release Metabolites from Human Serum Albumin Publication date: Available online 12 December 2013 Source:Journal of Magnetic Resonance</br> Author(s): M.D. Jupin , P.J. Michiels , F.C. Girard , M. Spraul , S.S. Wijmenga</br> Metabolite profiling by NMR of body fluids is increasingly used to successfully differentiate patients from healthy individuals. Metabolites and their concentrations are direct reporters of body biochemistry. However, in blood plasma...
nmrlearner Journal club 0 12-12-2013 11:39 PM
[NMR paper] NMR identification of endogenous metabolites interacting with fatted and non-fatted human serum albumin in blood plasma: Fatty acids influence the HSA-metabolite interaction.
NMR identification of endogenous metabolites interacting with fatted and non-fatted human serum albumin in blood plasma: Fatty acids influence the HSA-metabolite interaction. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles NMR identification of endogenous metabolites interacting with fatted and non-fatted human serum albumin in blood plasma: Fatty acids influence the HSA-metabolite interaction. J Magn Reson. 2013 Jan 8;228C:81-94 Authors: Jupin M, Michiels PJ, Girard FC, Spraul M,...
nmrlearner Journal club 0 02-03-2013 10:19 AM
NMR Identification of Endogenous Metabolites interacting with Fatted and Non-Fatted Human Serum Albumin in Blood Plasma: Fatty Acids influence the HSA-Metabolite Interaction
NMR Identification of Endogenous Metabolites interacting with Fatted and Non-Fatted Human Serum Albumin in Blood Plasma: Fatty Acids influence the HSA-Metabolite Interaction Available online 8 January 2013 Publication year: 2013 Source:Journal of Magnetic Resonance</br> </br> Metabolites and their concentrations are direct reporters on body biochemistry. Thanks to technical developments metabolic profiling of body fluids, such as blood plasma, by for instance NMR has in the past decade become increasingly accurate enabling successful clinical diagnostics. Human Serum...
nmrlearner Journal club 0 01-09-2013 10:01 AM
(1)H NMR study of monocrotaline and its metabolites in human blood.
(1)H NMR study of monocrotaline and its metabolites in human blood. (1)H NMR study of monocrotaline and its metabolites in human blood. Food Chem Toxicol. 2011 Aug 6; Authors: Yang YC, Crowder J, Wardle NJ, Yang L, White KN, Wang ZT, Annie Bligh SW Monocrotaline (MCT) is a naturally occurring hepatotoxic pyrrolizidine alkaloid found in plants. This investigation is aimed at furthering the understanding of the role of blood in mediating the transport of MCT and its reactive metabolites in humans. Reactions of monocrotaline and its metabolites,...
nmrlearner Journal club 0 08-17-2011 01:33 PM
DEER in Biological Multispin-Systems: A Case Study on the Fatty Acid Binding to Human Serum Albumin
DEER in Biological Multispin-Systems: A Case Study on the Fatty Acid Binding to Human Serum Albumin Publication year: 2011 Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 10 March 2011</br> Matthias J.N., Junk , Hans W., Spiess , Dariush, Hinderberger</br> In this study, self-assembled systems of human serum albumin (HSA) and spin-labeled fatty acids are characterized by double electron–electron resonance (DEER). HSA, being the most important transport protein of the human blood, is capable to host up to seven paramagnetic fatty acid...
nmrlearner Journal club 0 03-11-2011 05:00 PM
[NMR paper] 13C NMR studies of the binding of medium-chain fatty acids to human serum albumin.
13C NMR studies of the binding of medium-chain fatty acids to human serum albumin. Related Articles 13C NMR studies of the binding of medium-chain fatty acids to human serum albumin. J Lipid Res. 1994 Mar;35(3):458-67 Authors: Kenyon MA, Hamilton JA Binding of the medium-chain fatty acids (MCFA), octanoic (OCT) and decanoic (DEC) acid, to human serum albumin (HSA) has been studied by 13C NMR spectroscopy. NMR spectra at 35 degrees C showed an apparently homogeneous binding environment (a single, narrow resonance for the 13C-enriched carboxyl...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] 13C NMR studies of the binding of medium-chain fatty acids to human serum albumin.
13C NMR studies of the binding of medium-chain fatty acids to human serum albumin. Related Articles 13C NMR studies of the binding of medium-chain fatty acids to human serum albumin. J Lipid Res. 1994 Mar;35(3):458-67 Authors: Kenyon MA, Hamilton JA Binding of the medium-chain fatty acids (MCFA), octanoic (OCT) and decanoic (DEC) acid, to human serum albumin (HSA) has been studied by 13C NMR spectroscopy. NMR spectra at 35 degrees C showed an apparently homogeneous binding environment (a single, narrow resonance for the 13C-enriched carboxyl...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] 1H NMR studies of reactions of copper complexes with human blood plasma and urine.
1H NMR studies of reactions of copper complexes with human blood plasma and urine. Related Articles 1H NMR studies of reactions of copper complexes with human blood plasma and urine. Biochem Pharmacol. 1992 Jan 22;43(2):137-45 Authors: Bligh SW, Boyle HA, McEwen AB, Sadler PJ, Woodham RH Reactions of the copper complexes Cu(II)Cl2, 2-, and + (where DIPS is 3,5-diisopropylsalicylate and DMP is 2,9-dimethylphenanthroline) with human blood plasma and urine have been studied by 500 MHz 1H NMR spectroscopy, and CD spectroscopy has been used to...
nmrlearner Journal club 0 08-21-2010 11:41 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:13 AM.


Map