BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 06-12-2013, 11:42 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,734
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR Mapping of PCNA Interaction with Translesion Synthesis DNA Polymerase Rev1 Mediated by Rev1-BRCT Domain.

NMR Mapping of PCNA Interaction with Translesion Synthesis DNA Polymerase Rev1 Mediated by Rev1-BRCT Domain.

Related Articles NMR Mapping of PCNA Interaction with Translesion Synthesis DNA Polymerase Rev1 Mediated by Rev1-BRCT Domain.

J Mol Biol. 2013 Jun 6;

Authors: Pustovalova Y, Maciejewski MW, Korzhnev DM

Abstract
Rev1 is a Y-family translesion synthesis (TLS) DNA polymerase involved in bypass replication across sites of DNA damage and postreplicational gap filling. In the process of TLS high-fidelity replicative DNA polymerases stalled by DNA damage are replaced by error-prone TLS enzymes responsible for the majority of mutagenesis in eukaryotic cells. The polymerase exchange that gains low-fidelity TLS polymerases access to DNA is mediated by their interactions with proliferating cell nuclear antigen (PCNA). Rev1 stands alone from other Y-family TLS enzymes since it lacks the consensus PCNA-interacting protein box (PIP-box) motif, instead utilizing other modular domains for PCNA binding. Here we report solution NMR structure of an 11 kDa BRCA1 C-terminus (BRCT) domain from S. cerevisiae Rev1, and demonstrate with the use of TROSY NMR methods that Rev1-BRCT domain directly interacts with an 87 kDa PCNA in solution. The domain adopts ?/? fold (?1-?1-?2-?3-?2-?4-?3-?4) typical for BRCT domain superfamily. PCNA-binding interface of the Rev1-BRCT domain comprises conserved residues of the outer surface of the ?1 helix, ?1-?1, ?2-?3 and ?3-?2 loops. On the other hand, Rev1-BRCT binds to the inter-domain region of PCNA that overlaps with the binding site for the PIP-box motif. Furthermore, Rev1-BRCT domain bound to PCNA can be displaced by increasing amounts of the PIP-box peptide from TLS DNA polymerase pol?, suggesting that Rev1-BRCT and pol? PIP-box interactions with the same PCNA monomer are mutually exclusive. These results provide structural insights into PCNA recognition by TLS DNA polymerases that help better understand TLS regulation in eukaryotes.


PMID: 23747975 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
NMR Structure and Dynamics of the C-Terminal Domain from Human Rev1 and Its Complex with Rev1 Interacting Region of DNA Polymerase ?
NMR Structure and Dynamics of the C-Terminal Domain from Human Rev1 and Its Complex with Rev1 Interacting Region of DNA Polymerase ? http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi300566z/aop/images/medium/bi-2012-00566z_0004.gif Biochemistry DOI: 10.1021/bi300566z http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/rUIEy-kPnvE More...
nmrlearner Journal club 0 06-29-2012 08:44 AM
Insights into the interaction of discodermolide and docetaxel with tubulin. Mapping the binding sites of microtubule-stabilizing agents by using an integrated NMR and computational approach.
Insights into the interaction of discodermolide and docetaxel with tubulin. Mapping the binding sites of microtubule-stabilizing agents by using an integrated NMR and computational approach. Insights into the interaction of discodermolide and docetaxel with tubulin. Mapping the binding sites of microtubule-stabilizing agents by using an integrated NMR and computational approach. ACS Chem Biol. 2011 May 3; Authors: Canales A, R Salarichs J, Trigili C, Nieto L, Coderch C, Andreu JM, Paterson I, Jimenez-Barbero J, Díaz Pereira JF The binding...
nmrlearner Journal club 0 05-06-2011 02:00 AM
Observing selected domains in multi-domain proteins via sortase-mediated ligation and NMR spectroscopy
Observing selected domains in multi-domain proteins via sortase-mediated ligation and NMR spectroscopy Abstract NMR spectroscopy has distinct advantages for providing insight into protein structures, but faces significant resolution challenges as protein size increases. To alleviate such resonance overlap issues, the ability to produce segmentally labeled proteins is beneficial. Here we show that the S. aureus transpeptidase sortase A can be used to catalyze the ligation of two separately expressed domains of the same protein, MecA (B. subtilis). The yield of purified, segmentally...
nmrlearner Journal club 0 12-31-2010 08:38 PM
Observing selected domains in multi-domain proteins via sortase-mediated ligation and NMR spectroscopy.
Observing selected domains in multi-domain proteins via sortase-mediated ligation and NMR spectroscopy. Observing selected domains in multi-domain proteins via sortase-mediated ligation and NMR spectroscopy. J Biomol NMR. 2010 Dec 29; Authors: Refaei MA, Combs A, Kojetin DJ, Cavanagh J, Caperelli C, Rance M, Sapitro J, Tsang P NMR spectroscopy has distinct advantages for providing insight into protein structures, but faces significant resolution challenges as protein size increases. To alleviate such resonance overlap issues, the ability to...
nmrlearner Journal club 0 12-29-2010 04:04 PM
[NMR paper] NMR mapping of the HIV-1 Tat interaction surface of the KIX domain of the human coact
NMR mapping of the HIV-1 Tat interaction surface of the KIX domain of the human coactivator CBP. Related Articles NMR mapping of the HIV-1 Tat interaction surface of the KIX domain of the human coactivator CBP. Biochemistry. 2004 Feb 3;43(4):904-8 Authors: Vendel AC, Lumb KJ Tat is required for the expression of the HIV-1 genome. HIV-1 Tat interacts with the human transcriptional coactivator and acetyltransferase CREB-binding protein (CBP) via the KIX domain of CBP. Chemical shift perturbation mapping with nuclear magnetic resonance...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] Synthesis and interaction studies of 13C labeled lactone derivatives with a model pro
Synthesis and interaction studies of 13C labeled lactone derivatives with a model protein using 13C NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Synthesis and interaction studies of 13C labeled lactone derivatives with a model protein using 13C NMR. Bioorg Med Chem. 1993 Nov;1(5):389-97 Authors: Franot C, Benezra C, Lepoittevin JP Two molecules 9 and 14, representatives of two series of electrophilic lactone derivatives, have been synthesized, and labeled with...
nmrlearner Journal club 0 08-22-2010 03:01 AM
[NMR paper] 1H NMR study of the interaction of ATP with Escherichia coli RNA polymerase containin
1H NMR study of the interaction of ATP with Escherichia coli RNA polymerase containing in vivo-incorporated Co(II). Related Articles 1H NMR study of the interaction of ATP with Escherichia coli RNA polymerase containing in vivo-incorporated Co(II). Arch Biochem Biophys. 1991 Dec;291(2):307-10 Authors: Panth H, Brenner MC, Wu FY The DNA-dependent RNA polymerase containing two intrinsic cobalt ions (Co2-RPase) instead of the naturally occurring zinc was purified from Escherichia coli cells grown in zinc-depleted, cobalt-enriched media....
nmrlearner Journal club 0 08-21-2010 11:12 PM
[NMR paper] 1H NMR study of the interaction of ATP with Escherichia coli RNA polymerase containin
1H NMR study of the interaction of ATP with Escherichia coli RNA polymerase containing in vivo-incorporated Co(II). Related Articles 1H NMR study of the interaction of ATP with Escherichia coli RNA polymerase containing in vivo-incorporated Co(II). Arch Biochem Biophys. 1991 Dec;291(2):307-10 Authors: Panth H, Brenner MC, Wu FY The DNA-dependent RNA polymerase containing two intrinsic cobalt ions (Co2-RPase) instead of the naturally occurring zinc was purified from Escherichia coli cells grown in zinc-depleted, cobalt-enriched media....
nmrlearner Journal club 0 08-21-2010 11:12 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:00 PM.


Map