BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 02-28-2014, 07:08 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR investigations of metal interactions with unstructured soluble protein domains

NMR investigations of metal interactions with unstructured soluble protein domains

Publication date: Available online 28 February 2014
Source:Coordination Chemistry Reviews

Author(s): Riccardo De Ricco , Slawomir Potocki , Henryk Kozlowski , Daniela Valensin

Essential main-group elements [e.g., Na(I) and Ca(II)] and transition metal ions [e.g., Cu(II)/Cu(I), Fe(III)/Fe(II), Zn(II), and Ni(II)] play key roles in the structural organization and biological function of many macromolecules such as proteins, DNA, and RNA. Healthy conditions require tight regulation of metal concentrations inside and outside cells, and both metal deficiency and overload can lead to cellular dysfunction. Altered metabolism of transition metal ions is implicated in severe and chronic diseases, including cancer, neurodegenerative disorders, and microbial infection. Nature has developed a sophisticated machinery to balance the content of transition metal ions. Many enzymes, transporters, and chaperones are involved in these complex processes and control metal uptake and delivery to specific cellular domains. Many efforts have been devoted to clarifying metal interactions with amyloidogenic proteins, metal transporters, and metal storage proteins via different spectroscopic techniques. In this review we describe the application of NMR to determine the metal coordination spheres and structural features of flexible and disordered regions of proteins that are either involved in neurodegenerative processes or are derived from metal chaperones. The systems investigated include (i) copper, iron, and zinc binding to unstructured regions of prion protein, a-synuclein, and amyloid ß; (ii) zinc binding to extracellular domains of ZIP proteins; and (iii) zinc and nickel binding to the loop region of HypA, HspA, and SlyD proteins. The NMR behavior of these systems is compared and discussed. The benefits and drawbacks of the methodology are addressed by stressing the tricks and pitfalls encountered.







More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Solid-State NMR Investigations of Peptide-Lipid Interactions of the Transmembrane Domain of A Plant-Derived Protein, Hcf106.
Solid-State NMR Investigations of Peptide-Lipid Interactions of the Transmembrane Domain of A Plant-Derived Protein, Hcf106. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Solid-State NMR Investigations of Peptide-Lipid Interactions of the Transmembrane Domain of A Plant-Derived Protein, Hcf106. Chem Phys Lipids. 2013 Sep 24; Authors: Zhang L, Liu L, Maltsev S, Lorigan GA, Dabney-Smith C Abstract The chloroplast twin arginine translocation...
nmrlearner Journal club 0 10-01-2013 11:15 PM
Solid-State NMR Investigations of Peptide-Lipid Interactions of the Transmembrane Domain of A Plant-Derived Protein, Hcf106
Solid-State NMR Investigations of Peptide-Lipid Interactions of the Transmembrane Domain of A Plant-Derived Protein, Hcf106 Publication date: Available online 24 September 2013 Source:Chemistry and Physics of Lipids</br> Author(s): Lei Zhang , Lishan Liu , Sergey Maltsev , Gary A. Lorigan , Carole Dabney-Smith</br> The chloroplast twin arginine translocation system transports highly folded precursor proteins across the thylakoid using the protonmotive force as its only energy source. Hcf106 and another thylakoid protein, cpTatC compose the precursor receptor...
nmrlearner Journal club 0 09-25-2013 11:15 AM
[NMR paper] NMR investigations of structural and dynamics features of natively unstructured drug peptide - salmon calcitonin: implication to rational design of potent sCT analogs.
NMR investigations of structural and dynamics features of natively unstructured drug peptide - salmon calcitonin: implication to rational design of potent sCT analogs. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles NMR investigations of structural and dynamics features of natively unstructured drug peptide - salmon calcitonin: implication to rational design of potent sCT analogs. J Pept Sci. 2013 Jan;19(1):33-45 Authors: Rawat A, Kumar D ...
nmrlearner Journal club 0 06-07-2013 10:04 AM
[NMR paper] NMR investigations of protein-carbohydrate interactions: insights into the topology o
NMR investigations of protein-carbohydrate interactions: insights into the topology of the bound conformation of a lactose isomer and beta-galactosyl xyloses to mistletoe lectin and galectin-1. Related Articles NMR investigations of protein-carbohydrate interactions: insights into the topology of the bound conformation of a lactose isomer and beta-galactosyl xyloses to mistletoe lectin and galectin-1. Biochim Biophys Acta. 2001 Dec 19;1568(3):225-36 Authors: Alonso-Plaza JM, Canales MA, Jiménez M, Roldán JL, García-Herrero A, Iturrino L, Asensio JL,...
nmrlearner Journal club 0 11-19-2010 08:44 PM
[NMR paper] NMR investigations of protein-carbohydrate interactions binding studies and refined t
NMR investigations of protein-carbohydrate interactions binding studies and refined three-dimensional solution structure of the complex between the B domain of wheat germ agglutinin and N,N', N"-triacetylchitotriose. Related Articles NMR investigations of protein-carbohydrate interactions binding studies and refined three-dimensional solution structure of the complex between the B domain of wheat germ agglutinin and N,N', N"-triacetylchitotriose. Eur J Biochem. 2000 Jul;267(13):3965-78 Authors: Espinosa JF, Asensio JL, García JL, Laynez J, Bruix M, Wright...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] NMR investigations of protein-carbohydrate interactions: studies on the relevance of
NMR investigations of protein-carbohydrate interactions: studies on the relevance of Trp/Tyr variations in lectin binding sites as deduced from titration microcalorimetry and NMR studies on hevein domains. Determination of the NMR structure of the complex between pseudohevein and N,N',N"-triacetylchitotriose. Related Articles NMR investigations of protein-carbohydrate interactions: studies on the relevance of Trp/Tyr variations in lectin binding sites as deduced from titration microcalorimetry and NMR studies on hevein domains. Determination of the NMR structure of the complex...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] NMR investigations of protein-carbohydrate interactions: refined three-dimensional st
NMR investigations of protein-carbohydrate interactions: refined three-dimensional structure of the complex between hevein and methyl beta-chitobioside. Related Articles NMR investigations of protein-carbohydrate interactions: refined three-dimensional structure of the complex between hevein and methyl beta-chitobioside. Glycobiology. 1998 Jun;8(6):569-77 Authors: Asensio JL, Cañada FJ, Bruix M, González C, Khiar N, Rodríguez-Romero A, Jiménez-Barbero J The specific interaction of hevein with GlcNAc-containing oligosaccharides has been...
nmrlearner Journal club 0 11-17-2010 11:06 PM
[NMR paper] Yeast heat shock transcription factor N-terminal activation domains are unstructured
Yeast heat shock transcription factor N-terminal activation domains are unstructured as probed by heteronuclear NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Yeast heat shock transcription factor N-terminal activation domains are unstructured as probed by heteronuclear NMR spectroscopy. Protein Sci. 1996 Feb;5(2):262-9...
nmrlearner Journal club 0 08-22-2010 02:27 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:20 PM.


Map