Related ArticlesAn NMR investigation of the structure, function and role of the hERG channel selectivity filter in the long QT syndrome.
Biochim Biophys Acta. 2013 Mar 5;
Authors: Gravel AE, Arnold AA, Dufourc EJ, Marcotte I
Abstract
The human ether-a-go-go-related gene (hERG) voltage-gated K+ channels are located in heart cell membranes and hold a unique selectivity filter (SF) amino acid sequence (SVGFG) as compared to other K+ channels (TVGYG). The hERG provokes the acquired long QT syndrome (ALQTS) when blocked, as a side effect of drugs, leading to arrhythmia or heart failure. Its pore domain - including the SF - is believed to be a cardiotoxic drug target. In this study combining solution and solid-state NMR experiments we examine the structure and function of hERG's L622-K638 segment which comprises the SF, as well as its role in the ALQTS using reported active drugs. We first show that the SF segment is unstructured in solution with and without K+ ions in its surroundings, consistent with the expected flexibility required for the change between the different channel conductive states predicted by computational studies. We also show that the SF segment has the potential to perturb the membrane, but that the presence of K+ ions cancels this interaction. The SF moiety appears to be a possible target for promethazine in the ALQTS mechanism, but not as much for bepridil, cetirizine, diphenhydramine and fluvoxamine. The membrane affinity of the SF is also affected by the presence of drugs which also perturb model DMPC-based membranes. These results thus suggest that the membrane could play a role in the ALQTS by promoting the access to transmembrane or intracellular targets on the hERG channel, or perturbing the lipid-protein synergy.
PMID: 23473737 [PubMed - as supplied by publisher]
[NMR paper] MR spectroscopy in 18q(-) syndrome suggesting other than hypomyelination.
MR spectroscopy in 18q(-) syndrome suggesting other than hypomyelination.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles MR spectroscopy in 18q(-) syndrome suggesting other than hypomyelination.
Brain Dev. 2013 Jan 16;
Authors: Tada H, Takanashi JI
Abstract
We reported a 5-year-old boy with 18q(-) syndrome who showed typical magnetic resonance imaging (MRI) findings of high signal intensity on T2-weighted imaging, and a slightly high but lower than normal signal...
nmrlearner
Journal club
0
02-03-2013 10:19 AM
The dark energy of proteins comes to light: conformational entropy and its role in protein function revealed by NMR relaxation
The dark energy of proteins comes to light: conformational entropy and its role in protein function revealed by NMR relaxation
Available online 13 December 2012
Publication year: 2012
Source:Current Opinion in Structural Biology</br>
</br>
Historically it has been virtually impossible to experimentally determine the contribution of residual protein entropy to fundamental protein activities such as the binding of ligands. Recent progress has illuminated the possibility of employing NMR relaxation methods to quantitatively determine the role of changes in conformational...
nmrlearner
Journal club
0
02-03-2013 10:13 AM
[Question from NMRWiki Q&A forum] c13 filter noesy experment for homodimer protein
c13 filter noesy experment for homodimer protein
Dear wikiers
I would like to take c13 filter noesy experment for homodimer protein , total 20 kd size . could you please suggest which parameters should i consider more specificly while taking this experment to get best signal because i dont want to try on trial and error method. any knid of help is greatly appreciated
Thanking you in advance
Regards sri
nmrlearner
News from other NMR forums
0
06-30-2011 05:06 PM
An NMR study of the N-terminal domain of wild-type hERG and a T65P trafficking deficient hERG mutant.
An NMR study of the N-terminal domain of wild-type hERG and a T65P trafficking deficient hERG mutant.
An NMR study of the N-terminal domain of wild-type hERG and a T65P trafficking deficient hERG mutant.
Proteins. 2011 May 16;
Authors: Gayen S, Li Q, Chen AS, Nguyen TH, Huang Q, Hill J, Kang C
The human Ether-à-go-go Related Gene (hERG) potassium channel plays an important role in the heart by controlling the rapid delayed rectifier current. The N-terminal 135 residues (NTD) contain a Per-Arnt-Sim (PAS) domain and an N-terminal amphipathic helix....
nmrlearner
Journal club
0
06-12-2011 12:15 AM
[NMR paper] Large structure rearrangement of colicin ia channel domain after membrane binding fro
Large structure rearrangement of colicin ia channel domain after membrane binding from 2D 13C spin diffusion NMR.
Related Articles Large structure rearrangement of colicin ia channel domain after membrane binding from 2D 13C spin diffusion NMR.
J Am Chem Soc. 2005 May 4;127(17):6402-8
Authors: Luo W, Yao X, Hong M
One of the main mechanisms of membrane protein folding is by spontaneous insertion into the lipid bilayer from the aqueous environment. The bacterial toxin, colicin Ia, is one such protein. To shed light on the conformational changes...
nmrlearner
Journal club
0
11-25-2010 08:21 PM
NMR solution structure of the N-terminal domain of hERG and its interaction with the
NMR solution structure of the N-terminal domain of hERG and its interaction with the S4-S5 linker.
NMR solution structure of the N-terminal domain of hERG and its interaction with the S4-S5 linker.
Biochem Biophys Res Commun. 2010 Nov 2;
Authors: Li Q, Gayen S, Chen AS, Huang Q, Raida M, Kang C
The human Ether-à-go-go Related Gene (hERG) potassium channel mediates the rapid delayed rectifier current (IKr) in the cardiac action potential. Mutations in the 135 amino acid residue N-terminal domain (NTD) cause channel dysfunction or...
nmrlearner
Journal club
0
11-09-2010 11:29 AM
Solution NMR structure of the V27A drug resistant mutant of influenza A M2 channel.
Solution NMR structure of the V27A drug resistant mutant of influenza A M2 channel.
Solution NMR structure of the V27A drug resistant mutant of influenza A M2 channel.
Biochem Biophys Res Commun. 2010 Sep 9;
Authors: Pielak RM, Chou JJ
The M2 protein of influenza A virus forms a proton-selective channel that is required for viral replication; it is also the target of the anti-influenza drugs, amantadine and rimantadine. Widespread drug-resistant mutants, however, has greatly compromised the effectiveness of these drugs. Here, we report the...
nmrlearner
Journal club
0
09-14-2010 02:03 PM
NMR structure and ion channel activity of the p7 protein from hepatitis C virus.
NMR structure and ion channel activity of the p7 protein from hepatitis C virus.
Related Articles NMR structure and ion channel activity of the p7 protein from hepatitis C virus.
J Biol Chem. 2010 Jul 28;
Authors: Montserret R, Saint N, Vanbelle C, Salvay AG, Simorre JP, Ebel C, Sapay N, Renisio JG, Bockmann A, Steinmann E, Pietschmann T, Dubuisson J, Chipot C, Penin F
The small membrane protein p7 of hepatitis C virus forms oligomers and exhibits ion channel activity essential for virus infectivity. These viroporin features render p7 an...