BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 02-25-2011, 08:54 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,776
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR insights into the core of GED assembly by H/D exchange coupled with DMSO dissociation and analysis of the denatured state.

NMR insights into the core of GED assembly by H/D exchange coupled with DMSO dissociation and analysis of the denatured state.

NMR insights into the core of GED assembly by H/D exchange coupled with DMSO dissociation and analysis of the denatured state.

J Mol Biol. 2011 Feb 4;405(5):1202-14

Authors: Chakraborty S, Hosur RV

GTPase effector domain (GED) of dynamin forms megadalton-sized assembly in vitro, rendering its structural characterization highly challenging. To probe the core of the GED assembly, we performed H/D exchange in native state and analyzed the residual amides following dissociation by dimethyl sulfoxide (DMSO). The data indicated a hierarchy in solvent exposure: Ser2-Glu13, Glu23-Phe32, Asp37-Gln43, Val51-Met55, and Lys60-Asp64 followed by the remaining segments. This reflects the chain packing in the core of the assembly. The segment Leu65-Pro138 in the C-terminal half is largely in the interior of the core, while the N-terminal segment Asp37-Asp64 traverses into and out of the core. Next, we characterized the structural and motional behavior of the DMSO-denatured state. The stretches Gly9-Lys18, Asp37-Arg42, Lys68-Met74, and Ser136-Thr137 were seen to display alternate conformations in slow exchange. In the major population, both ? and ? propensities were seen along the polypeptide chain. Spectral density analysis of (15)N R(1), R(2), and (1)H-(15)N nuclear Overhauser effect collected at 600 and 800*MHz suggested the presence of four domains of slow motions, namely, A (Leu40-Tyr91), A' (Leu124-Ile130); B (Asn97-Gln107), B' (Tyr117-Leu120), two of which flank the region Arg109-Met116, for which no peaks are seen in the heteronuclear single quantum coherence spectrum. These domains would identify folding and association initiation sites of GED. Interestingly, they also coincide with the helical domain in the native state, suggesting that helix formation leads to self-association of GED.

PMID: 21144852 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Electrostatically-driven fast association and perdeuteration allow detection of transferred cross-relaxation for G protein-coupled receptor ligands with equilibrium dissociation constants in the high-to-low nanomolar range
Electrostatically-driven fast association and perdeuteration allow detection of transferred cross-relaxation for G protein-coupled receptor ligands with equilibrium dissociation constants in the high-to-low nanomolar range Abstract The mechanism of signal transduction mediated by G protein-coupled receptors is a subject of intense research in pharmacological and structural biology. Ligand association to the receptor constitutes a critical event in the activation process. Solution-state NMR can be amenable to high-resolution structure determination of agonist molecules in their...
nmrlearner Journal club 0 06-25-2011 04:12 AM
[NMR paper] Biosynthesis and NMR analysis of a 73-residue domain of a Saccharomyces cerevisiae G protein-coupled receptor.
Biosynthesis and NMR analysis of a 73-residue domain of a Saccharomyces cerevisiae G protein-coupled receptor. Related Articles Biosynthesis and NMR analysis of a 73-residue domain of a Saccharomyces cerevisiae G protein-coupled receptor. Biochemistry. 2005 Sep 6;44(35):11795-810 Authors: Estephan R, Englander J, Arshava B, Samples KL, Becker JM, Naider F The yeast Saccharomyces cerevisiae alpha-factor pheromone receptor (Ste2p) was used as a model G protein-coupled receptor (GPCR). A 73-mer multidomain fragment of Ste2p (residues 267-339)...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Structure of segments of a G protein-coupled receptor: CD and NMR analysis of the Sac
Structure of segments of a G protein-coupled receptor: CD and NMR analysis of the Saccharomyces cerevisiae tridecapeptide pheromone receptor. Related Articles Structure of segments of a G protein-coupled receptor: CD and NMR analysis of the Saccharomyces cerevisiae tridecapeptide pheromone receptor. Biopolymers. 1998 Nov;46(6):343-57 Authors: Arshava B, Liu SF, Jiang H, Breslav M, Becker JM, Naider F Peptides representing both loop and the sixth transmembrane regions of the alpha-factor receptor of Saccharomyces cerevisiae were synthesized by...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] Hydrogen exchange properties of proteins in native and denatured states monitored by
Hydrogen exchange properties of proteins in native and denatured states monitored by mass spectrometry and NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Hydrogen exchange properties of proteins in native and denatured states monitored by mass spectrometry and NMR. Protein Sci. 1997 Jun;6(6):1316-24 Authors: Chung EW,...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] Hydrogen exchange properties of proteins in native and denatured states monitored by
Hydrogen exchange properties of proteins in native and denatured states monitored by mass spectrometry and NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Hydrogen exchange properties of proteins in native and denatured states monitored by mass spectrometry and NMR. Protein Sci. 1997 Jun;6(6):1316-24 Authors: Chung EW,...
nmrlearner Journal club 0 08-22-2010 03:03 PM
[NMR paper] NMR analysis of the residual structure in the denatured state of an unusual mutant of
NMR analysis of the residual structure in the denatured state of an unusual mutant of staphylococcal nuclease. Related Articles NMR analysis of the residual structure in the denatured state of an unusual mutant of staphylococcal nuclease. Structure. 1993 Oct 15;1(2):121-34 Authors: Shortle D, Abeygunawardana C BACKGROUND: Staphylococcal nuclease is a well-developed model system for analyzing the effects of mutations on protein folding and stability. Substitution of glycine 88 with valine (Gly88Val) destabilizes staphylococcal nuclease by 1.0...
nmrlearner Journal club 0 08-22-2010 03:01 AM
[NMR paper] Structural description of acid-denatured cytochrome c by hydrogen exchange and 2D NMR
Structural description of acid-denatured cytochrome c by hydrogen exchange and 2D NMR. Related Articles Structural description of acid-denatured cytochrome c by hydrogen exchange and 2D NMR. Biochemistry. 1990 Nov 20;29(46):10433-7 Authors: Jeng MF, Englander SW, Elöve GA, Wand AJ, Roder H Hydrogen exchange and two-dimensional nuclear magnetic resonance (2D NMR) techniques were used to characterize the structure of oxidized horse cytochrome c at acid pH and high ionic strength. Under these conditions, cytochrome c is known to assume a...
nmrlearner Journal club 0 08-21-2010 11:04 PM
Installation of GROMACS 3.3.1 on Dell Inspiron 6400 with Fedora Core 6, Test 3, Dual Core processor
This is not really a "hard-core NMR topic" but it could be useful for people who try to complement dynamics data from NMR relaxation experiments with MD simulations. I had really hard time trying to install the newer versions of Gromacs 3.3 and 3.3.1 on my laptop (Dell Inspiron 6400 Dual Core processor) . The laptop used to run Suse 10.1 that was recently replaced with Fedora Core 6 Test 3 (that finally supports Intel integrated mobile 945 video cards). With both OS, Gromacs 3.3.x could be installed, however, its sub-program "genion" failed (the program never ends while consuming 100%...
administrator Molecular Dynamics programs 0 10-04-2006 11:50 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:12 AM.


Map