Related ArticlesNMR Insight into Myosin-Binding Subunit Coiled Coil Structure Reveals Binding Interface with Protein Kinase G-I? Leucine Zipper in Vascular Function.
Abstract
Nitrovasodilators relax vascular smooth muscle cells (VSMC) in part by modulating the interaction of the C-terminal coiled-coil domain (CC) and/or leucine zipper (LZ) domain of the myosin light-chain phosphatase (MLCP) component, myosin-binding subunit (MBS), with the N-terminal LZ domain of protein kinase G (PKG)-I?. Despite the importance of vasodilation in cardiovascular homeostasis and therapy, our structural understanding of the MBS CC interaction with LZ PKG-I? has remained limited. Here, we report the three-dimensional NMR solution structure of homodimeric CC MBS in which aa 932-967 form a coiled-coil of two monomeric ?-helices in parallel orientation. We found that the structure is stabilized by non-covalent interactions, with dominant contributions from hydrophobic residues at a and d heptad positions. Using NMR chemical shift perturbation (CSP) analysis, we identified a subset of hydrophobic and charged residues of CC MBS (localized within and adjacent to the C-terminal region) contributing to the dimer-dimer interaction interface between homodimeric CC MBS and homodimeric LZ PKG-I?. 15N backbone relaxation NMR revealed the dynamic features of the CC MBS interface residues identified by NMR CSP. Paramagnetic relaxation-enhancement (PRE) and CSP NMR guided HADDOCK modeling of the dimer-dimer interface of the hetero-tetrameric complex exhibits the involvement of non-covalent intermolecular interactions that are localized within and adjacent to the C-terminal regions of each homodimer. These results deepen our understanding of the binding restraints of this CC MBS-LZ PKG-I? low-affinity heterotetrameric complex and allow re-evaluation of the role(s) of MLCP partner polypeptides in regulation of VSMC contractility.
PMID: 28280239 [PubMed - as supplied by publisher]
[NMR paper] Structure-Function Analysis of the Non-Muscle Myosin Light Chain Kinase (nmMLCK) Isoform by NMR Spectroscopy and Molecular Modeling: Influence of MYLK Variants.
Structure-Function Analysis of the Non-Muscle Myosin Light Chain Kinase (nmMLCK) Isoform by NMR Spectroscopy and Molecular Modeling: Influence of MYLK Variants.
Related Articles Structure-Function Analysis of the Non-Muscle Myosin Light Chain Kinase (nmMLCK) Isoform by NMR Spectroscopy and Molecular Modeling: Influence of MYLK Variants.
PLoS One. 2015;10(6):e0130515
Authors: Shen K, Ramirez B, Mapes B, Shen GR, Gokhale V, Brown ME, Santarsiero B, Ishii Y, Dudek SM, Wang T, Garcia JG
Abstract
The MYLK gene encodes the...
nmrlearner
Journal club
0
06-26-2015 09:55 PM
[NMR paper] NMR Assignment and Secondary Structure of Coiled Coil Domain of C-terminal Myosin Binding Subunit of Myosin Phosphatase.
NMR Assignment and Secondary Structure of Coiled Coil Domain of C-terminal Myosin Binding Subunit of Myosin Phosphatase.
Related Articles NMR Assignment and Secondary Structure of Coiled Coil Domain of C-terminal Myosin Binding Subunit of Myosin Phosphatase.
Protein Pept Lett. 2014 Mar 28;
Authors: Sharma AK, Rigby AC
Abstract
Protein-protein interactions between the C-terminal domain of Myosin Binding Subunit (MBS) of MLC Phosphatase (MBSCT180; C-terminal 180 aa) and the N-terminal coiled coil (CC) leucine zipper (LZ)...
nmrlearner
Journal club
0
04-04-2014 01:19 PM
Solution NMR structure of VF0530 from Vibrio fischeri reveals a nucleic acid-binding function.
Solution NMR structure of VF0530 from Vibrio fischeri reveals a nucleic acid-binding function.
Solution NMR structure of VF0530 from Vibrio fischeri reveals a nucleic acid-binding function.
Proteins. 2011 Oct;79(10):2988-91
Authors: Aramini JM, Rossi P, Fischer M, Xiao R, Acton TB, Montelione GT
Abstract
Protein domain family PF09905 (DUF2132) is a family of small domains of unknown function that are conserved in a wide range of bacteria. Here we describe the solution NMR structure of the 80-residue VF0530 protein from Vibrio fischeri,...
nmrlearner
Journal club
0
09-10-2011 06:51 PM
[NMR paper] Rapid and accurate structure determination of coiled-coil domains using NMR dipolar couplings: application to cGMP-dependent protein kinase Ialpha.
Rapid and accurate structure determination of coiled-coil domains using NMR dipolar couplings: application to cGMP-dependent protein kinase Ialpha.
Related Articles Rapid and accurate structure determination of coiled-coil domains using NMR dipolar couplings: application to cGMP-dependent protein kinase Ialpha.
Protein Sci. 2005 Sep;14(9):2421-8
Authors: Schnell JR, Zhou GP, Zweckstetter M, Rigby AC, Chou JJ
Coiled-coil motifs play essential roles in protein assembly and molecular recognition, and are therefore the targets of many ongoing...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] NMR structure of a parallel homotrimeric coiled coil.
NMR structure of a parallel homotrimeric coiled coil.
Related Articles NMR structure of a parallel homotrimeric coiled coil.
Nat Struct Biol. 1998 Aug;5(8):687-91
Authors: Dames SA, Kammerer RA, Wiltscheck R, Engel J, Alexandrescu AT
The solution structure of the oligomerization domain of cartilage matrix protein (also known as matrilin-1) has been determined by heteronuclear NMR spectroscopy. The domain folds into a parallel, disulfide-linked, three-stranded, alpha-helical coiled coil, spanning five heptad repeats in the amino acid sequence....
nmrlearner
Journal club
0
11-17-2010 11:15 PM
[NMR paper] Heteronuclear NMR assignments and secondary structure of the coiled coil trimerizatio
Heteronuclear NMR assignments and secondary structure of the coiled coil trimerization domain from cartilage matrix protein in oxidized and reduced forms.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Heteronuclear NMR assignments and secondary structure of the coiled coil trimerization domain from cartilage matrix protein in oxidized and reduced...
nmrlearner
Journal club
0
08-22-2010 05:08 PM
[NMR paper] High resolution NMR solution structure of the leucine zipper domain of the c-Jun homo
High resolution NMR solution structure of the leucine zipper domain of the c-Jun homodimer.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-standard-jbc_full_free.gif Related Articles High resolution NMR solution structure of the leucine zipper domain of the c-Jun homodimer.
J Biol Chem. 1996 Jun 7;271(23):13663-7
Authors: Junius FK, O'Donoghue SI, Nilges M, Weiss AS, King GF
The solution structure of the c-Jun leucine zipper domain has been determined to high resolution using a new...
nmrlearner
Journal club
0
08-22-2010 02:27 PM
[NMR paper] Backbone dynamics of the c-Jun leucine zipper: 15N NMR relaxation studies.
Backbone dynamics of the c-Jun leucine zipper: 15N NMR relaxation studies.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Backbone dynamics of the c-Jun leucine zipper: 15N NMR relaxation studies.
Biochemistry. 1996 Apr 16;35(15):4867-77
Authors: MacKay JP, Shaw GL, King GF
The backbone dynamics of the coiled-coil leucine zipper domain of c-Jun have been studied using proton-detected two-dimensional 1H-15N NMR spectroscopy. Longitudinal (T1) and transverse (T2) 15N relaxation times,...