BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-19-2010, 08:44 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR identification of local structural preferences in HIV-1 protease tethered heterod

NMR identification of local structural preferences in HIV-1 protease tethered heterodimer in 6 M guanidine hydrochloride.

Related Articles NMR identification of local structural preferences in HIV-1 protease tethered heterodimer in 6 M guanidine hydrochloride.

FEBS Lett. 2001 Dec 7;509(2):218-24

Authors: Bhavesh NS, Panchal SC, Mittal R, Hosur RV

Understanding protein folding requires complete characterization of all the states of the protein present along the folding pathways. For this purpose nuclear magnetic resonance (NMR) has proved to be a very powerful technique because of the great detail it can unravel regarding the structure and dynamics of protein molecules. We report here NMR identification of local structural preferences in human immunodeficiency virus-1 protease in the 'unfolded state'. Analyses of the chemical shifts revealed the presence of local structural preferences many of which are native-like, and there are also some non-native structural elements. Three-bond H(N)-H(alpha) coupling constants that could be measured for some of the N-terminal and C-terminal residues are consistent with the native-like beta-structure. Unusually shifted 15N and amide proton chemical shifts of residues adjacent to some prolines and tryptophans also indicate the presence of some structural elements. These conclusions are supported by amide proton temperature coefficients and nuclear Overhauser enhancement data. The locations of the residues exhibiting preferred structural propensities on the crystal structure of the protein, give useful insights into the folding mechanism of this protein.

PMID: 11741592 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Interaction Tensors and Local Dynamics in Common Structural Motifs of Nitrogen: A Solid-State 14N NMR and DFT Study
Interaction Tensors and Local Dynamics in Common Structural Motifs of Nitrogen: A Solid-State 14N NMR and DFT Study Luke A. O’Dell, Robert W. Schurko, Kristopher J. Harris, Jochen Autschbach and Christopher I. Ratcliffe http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja108181y/aop/images/medium/ja-2010-08181y_0020.gif Journal of the American Chemical Society DOI: 10.1021/ja108181y http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/RPRAYPgAJxo
nmrlearner Journal club 0 12-24-2010 03:08 AM
[NMR paper] Protein structural class identification directly from NMR spectra using averaged chem
Protein structural class identification directly from NMR spectra using averaged chemical shifts. Related Articles Protein structural class identification directly from NMR spectra using averaged chemical shifts. Bioinformatics. 2003 Nov 1;19(16):2054-64 Authors: Mielke SP, Krishnan VV Knowledge of the three-dimensional structure of proteins is integral to understanding their functions, and a necessity in the era of proteomics. A wide range of computational methods is employed to estimate the secondary, tertiary, and quaternary structures of...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Real time NMR monitoring of local unfolding of HIV-1 protease tethered dimer driven b
Real time NMR monitoring of local unfolding of HIV-1 protease tethered dimer driven by autolysis. Related Articles Real time NMR monitoring of local unfolding of HIV-1 protease tethered dimer driven by autolysis. FEBS Lett. 2001 May 18;497(1):59-64 Authors: Panchal SC, Bhavesh NS, Hosur RV Structural studies in proteases have been hampered because of their inherent autolytic function. However, since autolysis is known to be mediated via protein unfolding, careful monitoring of the autolytic reaction has the potential to throw light on the...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] Local structural plasticity of the prion protein. Analysis of NMR relaxation dynamics
Local structural plasticity of the prion protein. Analysis of NMR relaxation dynamics. Related Articles Local structural plasticity of the prion protein. Analysis of NMR relaxation dynamics. Biochemistry. 2001 Mar 6;40(9):2743-53 Authors: Viles JH, Donne D, Kroon G, Prusiner SB, Cohen FE, Dyson HJ, Wright PE A template-assisted conformational change of the cellular prion protein (PrP(C)) from a predominantly helical structure to an amyloid-type structure with a higher proportion of beta-sheet is thought to be the causative factor in prion...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] Delineation of conformational preferences in human salivary statherin by 1H, 31P NMR
Delineation of conformational preferences in human salivary statherin by 1H, 31P NMR and CD studies: sequential assignment and structure-function correlations. Related Articles Delineation of conformational preferences in human salivary statherin by 1H, 31P NMR and CD studies: sequential assignment and structure-function correlations. J Biomol Struct Dyn. 1998 Aug;16(1):91-107 Authors: Naganagowda GA, Gururaja TL, Levine MJ Membrane-induced solution structure of human salivary statherin, a 43 amino acid residue acidic phosphoprotein, has been...
nmrlearner Journal club 0 11-17-2010 11:15 PM
Structural dynamics of bio-macromolecules by NMR: the slowly relaxing local structure
Structural dynamics of bio-macromolecules by NMR: the slowly relaxing local structure approach. Related Articles Structural dynamics of bio-macromolecules by NMR: the slowly relaxing local structure approach. Prog Nucl Magn Reson Spectrosc. 2010 May;56(4):360-405 Authors: Meirovitch E, Shapiro YE, Polimeno A, Freed JH
nmrlearner Journal club 0 10-19-2010 04:51 PM
[NMR paper] 1H NMR sequential assignments and identification of secondary structural elements in
1H NMR sequential assignments and identification of secondary structural elements in oxidized putidaredoxin, an electron-transfer protein from Pseudomonas. Related Articles 1H NMR sequential assignments and identification of secondary structural elements in oxidized putidaredoxin, an electron-transfer protein from Pseudomonas. Biochemistry. 1992 Feb 25;31(7):1961-8 Authors: Ye XM, Pochapsky TC, Pochapsky SS Sequential 1H resonance assignments and secondary structural features of putidaredoxin (Pdx), a 106-residue globular protein consisting of...
nmrlearner Journal club 0 08-21-2010 11:41 PM
Structural Dynamics of Bio-Macromolecules by NMR: The Slowly Relaxing Local Structure
Structural Dynamics of Bio-Macromolecules by NMR: The Slowly Relaxing Local Structure Approach Publication year: 2010 Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 27 March 2010</br> Eva, Meirovitch , Yury E., Shapiro , Antonino, Polimeno , Jack H., Freed</br> More...
nmrlearner Journal club 0 08-16-2010 03:50 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:57 PM.


Map