BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 04-20-2016, 05:09 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR Identification of the Binding Surfaces Involved in the Salmonella and Shigella Type III Secretion Tip-Translocon Protein-Protein Interactions.

NMR Identification of the Binding Surfaces Involved in the Salmonella and Shigella Type III Secretion Tip-Translocon Protein-Protein Interactions.

Related Articles NMR Identification of the Binding Surfaces Involved in the Salmonella and Shigella Type III Secretion Tip-Translocon Protein-Protein Interactions.

Proteins. 2016 Apr 19;

Authors: McShan AC, Kaur K, Chatterjee S, Knight KM, De Guzman RN

Abstract
The type III secretion system (T3SS) is essential for the pathogenesis of many bacteria including Salmonella and Shigella, which together are responsible for millions of deaths worldwide each year. The structural component of the T3SS consists of the needle apparatus, which is assembled in part by the protein-protein interaction between the tip and the translocon. The atomic detail of the interaction between the tip and the translocon proteins is currently unknown. Here, we used NMR methods to identify that the N-terminal domain of the Salmonella SipB translocon protein interacts with the SipD tip protein at a surface at the distal region of the tip formed by the mixed ?/? domain and a portion of its coiled-coil domain. Likewise, the Shigella IpaB translocon protein and the IpaD tip protein interact with each other using similar surfaces identified for the Salmonella homologs. Furthermore, removal of the extreme N-terminal residues of the translocon protein, previously thought to be important for the interaction, had little change on the binding surface. Finally, mutations at the binding surface of SipD reduced invasion of Salmonella into human intestinal epithelial cells. Together, these results reveal the binding surfaces involved in the tip-translocon protein-protein interaction and advance our understanding of the assembly of the T3SS needle apparatus. This article is protected by copyright. All rights reserved.


PMID: 27093649 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Data supporting beta-amyloid dimer structural transitions and protein-lipid interactions on asymmetric lipid bilayer surfaces using MD simulations on experimentally derived NMR protein structures.
Data supporting beta-amyloid dimer structural transitions and protein-lipid interactions on asymmetric lipid bilayer surfaces using MD simulations on experimentally derived NMR protein structures. Data supporting beta-amyloid dimer structural transitions and protein-lipid interactions on asymmetric lipid bilayer surfaces using MD simulations on experimentally derived NMR protein structures. Data Brief. 2016 Jun;7:658-72 Authors: Cheng SY, Chou G, Buie C, Vaughn MW, Compton C, Cheng KH Abstract This data article supports the...
nmrlearner Journal club 0 04-08-2016 01:05 PM
[NMR paper] NMR Characterization of the Type III Secretion System Tip Chaperone Protein PcrG of Pseudomonas aeruginosa.
NMR Characterization of the Type III Secretion System Tip Chaperone Protein PcrG of Pseudomonas aeruginosa. Related Articles NMR Characterization of the Type III Secretion System Tip Chaperone Protein PcrG of Pseudomonas aeruginosa. Biochemistry. 2015 Oct 9; Authors: Chaudhury S, Nordhues BA, Kaur K, Zhang N, De Guzman RN Abstract Lung infection with Pseudomonas aeruginosa is the leading cause of death among cystic fibrosis patients. To initiate infection, P. aeruginosa assembles a protein nanomachine, the type III secretion...
nmrlearner Journal club 0 10-10-2015 06:47 PM
[NMR paper] High-resolution structure of the Shigella type-III secretion needle by solid-state NMR and cryo-electron microscopy.
High-resolution structure of the Shigella type-III secretion needle by solid-state NMR and cryo-electron microscopy. High-resolution structure of the Shigella type-III secretion needle by solid-state NMR and cryo-electron microscopy. Nat Commun. 2014;5:4976 Authors: Demers JP, Habenstein B, Loquet A, Kumar Vasa S, Giller K, Becker S, Baker D, Lange A, Sgourakis NG Abstract We introduce a general hybrid approach for determining the structures of supramolecular assemblies. Cryo-electron microscopy (cryo-EM) data define the overall...
nmrlearner Journal club 0 09-30-2014 02:18 PM
[NMR paper] NMR Model of PrgI-SipD Interaction and its Implications in the Needle-Tip Assembly of the Salmonella Type III Secretion System.
NMR Model of PrgI-SipD Interaction and its Implications in the Needle-Tip Assembly of the Salmonella Type III Secretion System. Related Articles NMR Model of PrgI-SipD Interaction and its Implications in the Needle-Tip Assembly of the Salmonella Type III Secretion System. J Mol Biol. 2014 Jun 18; Authors: Rathinavelan T, Lara-Tejero M, Lefebre M, Chatterjee S, McShan AC, Guo DC, Tang C, Galan JE, De Guzman RN Abstract Salmonella and other pathogenic bacteria use the type III secretion system (T3SS) to inject virulence proteins...
nmrlearner Journal club 0 06-22-2014 12:24 PM
[NMR paper] NMR structure of a type IVb pilin from Salmonella typhi and its assembly into pilus.
NMR structure of a type IVb pilin from Salmonella typhi and its assembly into pilus. Related Articles NMR structure of a type IVb pilin from Salmonella typhi and its assembly into pilus. J Biol Chem. 2004 Jul 23;279(30):31599-605 Authors: Xu XF, Tan YW, Lam L, Hackett J, Zhang M, Mok YK The structure of the N-terminal-truncated Type IVb structural pilin (t-PilS) from Salmonella typhi was determined by NMR. Although topologically similar to the recently determined x-ray structure of pilin from Vibrio cholerae toxin-coregulated pilus, the only...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Identification of protein surfaces by NMR measurements with a pramagnetic Gd(III) che
Identification of protein surfaces by NMR measurements with a pramagnetic Gd(III) chelate. Related Articles Identification of protein surfaces by NMR measurements with a pramagnetic Gd(III) chelate. J Am Chem Soc. 2002 Jan 23;124(3):372-3 Authors: Pintacuda G, Otting G Gd-diethylenetriamine pentaacetic acid-bismethylamide, Gd(DTPA-BMA), is shown to be a reagent suitable for the identification of protein surfaces. Compared to the conventionally used spin-label TEMPOL, Gd(DTPA-BMA) is a stronger relaxation agent, requiring lesser concentrations...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] NMR identification of protein surfaces using paramagnetic probes.
NMR identification of protein surfaces using paramagnetic probes. Related Articles NMR identification of protein surfaces using paramagnetic probes. Biochemistry. 1990 Oct 30;29(43):10041-8 Authors: Petros AM, Mueller L, Kopple KD Paramagnetic agents produce line broadening and thus cancellation of anti phase cross-peak components in two-dimensional correlated nuclear magnetic resonance spectra. The specificity of this effect was examined to determine its utility for identifying surface residues of proteins. Ubiquitin and hen egg white...
nmrlearner Journal club 0 08-21-2010 11:04 PM
[NMR paper] NMR studies of the C-terminal secretion signal of the haem-binding protein, HasA.
NMR studies of the C-terminal secretion signal of the haem-binding protein, HasA. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles NMR studies of the C-terminal secretion signal of the haem-binding protein, HasA. Eur J Biochem. 1999 Apr;261(2):562-8 Authors: Izadi-Pruneyre N, Wolff N, Redeker V, Wandersman C, Delepierre M, Lecroisey A HasA is a haem-binding protein which is secreted under iron-deficiency conditions by the...
nmrlearner Journal club 0 08-21-2010 04:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:15 AM.


Map