BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-21-2010, 11:45 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,783
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR determination of residual structure in a urea-denatured protein, the 434-represso

NMR determination of residual structure in a urea-denatured protein, the 434-repressor.

Related Articles NMR determination of residual structure in a urea-denatured protein, the 434-repressor.

Science. 1992 Sep 11;257(5076):1559-63

Authors: Neri D, Billeter M, Wider G, Wüthrich K

A nuclear magnetic resonance (NMR) structure determination is reported for the polypeptide chain of a globular protein in strongly denaturing solution. Nuclear Overhauser effect (NOE) measurements with a 7 molar urea solution of the amino-terminal 63-residue domain of the 434-repressor and distance geometry calculations showed that the polypeptide segment 54 to 59 forms a hydrophobic cluster containing the side chains of Val54, Val56, Trp58, and Leu59. This residual structure in the urea-unfolded protein is related to the corresponding region of the native, folded protein by simple rearrangements of the residues 58 to 60. Based on these observations a model for the early phase of refolding of the 434-repressor(1-63) is proposed.

PMID: 1523410 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Determination of the Structures of Symmetric Protein Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings.
Determination of the Structures of Symmetric Protein Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings. Determination of the Structures of Symmetric Protein Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings. J Am Chem Soc. 2011 Apr 5; Authors: Sgourakis NG, Lange OF, Dimaio F, Andre? I, Fitzkee NC, Rossi P, Montelione GT, Bax A, Baker D Symmetric protein dimers, trimers, and higher-order cyclic oligomers play key roles in many biological processes. However, structural studies of oligomeric systems by solution NMR...
nmrlearner Journal club 0 04-07-2011 09:54 PM
Determination of the Structures of Symmetric Protein Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings
Determination of the Structures of Symmetric Protein Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings Nikolaos G. Sgourakis, Oliver F. Lange, Frank DiMaio, Ingemar Andre?, Nicholas C. Fitzkee, Paolo Rossi, Gaetano T. Montelione, Ad Bax and David Baker http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja111318m/aop/images/medium/ja-2010-11318m_0008.gif Journal of the American Chemical Society DOI: 10.1021/ja111318m http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner Journal club 0 04-06-2011 10:54 AM
[NMR paper] NMR characterization of residual structure in the denatured state of protein L.
NMR characterization of residual structure in the denatured state of protein L. Related Articles NMR characterization of residual structure in the denatured state of protein L. J Mol Biol. 2000 Jun 23;299(5):1341-51 Authors: Yi Q, Scalley-Kim ML, Alm EJ, Baker D Triple-resonance NMR experiments were used to assign the (13)C(alpha), (13)C(beta), (15)N and NH resonances for all the residues in the denatured state of a destabilized protein L variant in 2 M guanidine. The chemical shifts of most resonances were very close to their random coil...
nmrlearner Journal club 0 11-18-2010 09:15 PM
[NMR paper] Structural and dynamic characterization of the urea denatured state of the immunoglob
Structural and dynamic characterization of the urea denatured state of the immunoglobulin binding domain of streptococcal protein G by multidimensional heteronuclear NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Structural and dynamic characterization of the urea denatured state of the immunoglobulin binding domain of streptococcal...
nmrlearner Journal club 0 08-22-2010 03:50 AM
[NMR paper] A comparison of the pH, urea, and temperature-denatured states of barnase by heteronu
A comparison of the pH, urea, and temperature-denatured states of barnase by heteronuclear NMR: implications for the initiation of protein folding. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles A comparison of the pH, urea, and temperature-denatured states of barnase by heteronuclear NMR: implications for the initiation of protein folding. J Mol Biol. 1995 Nov 24;254(2):305-21 Authors: Arcus VL, Vuilleumier S, Freund SM, Bycroft M, Fersht AR The denatured states of...
nmrlearner Journal club 0 08-22-2010 03:50 AM
[NMR paper] NMR analysis of the residual structure in the denatured state of an unusual mutant of
NMR analysis of the residual structure in the denatured state of an unusual mutant of staphylococcal nuclease. Related Articles NMR analysis of the residual structure in the denatured state of an unusual mutant of staphylococcal nuclease. Structure. 1993 Oct 15;1(2):121-34 Authors: Shortle D, Abeygunawardana C BACKGROUND: Staphylococcal nuclease is a well-developed model system for analyzing the effects of mutations on protein folding and stability. Substitution of glycine 88 with valine (Gly88Val) destabilizes staphylococcal nuclease by 1.0...
nmrlearner Journal club 0 08-22-2010 03:01 AM
A device for the measurement of residual chemical shift anisotropy and residual dipol
Abstract Residual dipolar coupling (RDC) and residual chemical shift anisotropy (RCSA) report on orientational properties of a dipolar bond vector and a chemical shift anisotropy principal axis system, respectively. They can be highly complementary in the analysis of backbone structure and dynamics in proteins as RCSAs generally include a report on vectors out of a peptide plane while RDCs usually report on in-plane vectors. Both RDC and RCSA average to zero in isotropic solutions and require partial orientation in a magnetic field to become observable. While the alignment and measurement of...
nmrlearner Journal club 0 08-14-2010 04:19 AM
De novo determination of internuclear vector orientations from residual dipolar couplings measured in three independent alignment media
De novo determination of internuclear vector orientations from residual dipolar couplings measured in three independent alignment media Ke Ruan, Kathryn B. Briggman and Joel R. Tolman Journal of Biomolecular NMR; 2008; 41(2) pp 61 - 76 Abstract: The straightforward interpretation of solution state residual dipolar couplings (RDCs) in terms of internuclear vector orientations generally requires prior knowledge of the alignment tensor, which in turn is normally estimated using a structural model. We have developed a protocol which allows the requirement for prior structural knowledge to...
daniel Journal club 0 08-03-2008 03:54 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:31 PM.


Map