NMR characterizations of the ice binding surface of an antifreeze protein.
PLoS One. 2010;5(12):e15682
Authors: Hong J, Hu Y, Li C, Jia Z, Xia B, Jin C
Antifreeze protein (AFP) has a unique function of reducing solution freezing temperature to protect organisms from ice damage. However, its functional mechanism is not well understood. An intriguing question concerning AFP function is how the high selectivity for ice ligand is achieved in the presence of free water of much higher concentration which likely imposes a large kinetic barrier for protein-ice recognition. In this study, we explore this question by investigating the property of the ice binding surface of an antifreeze protein using NMR spectroscopy. An investigation of the temperature gradient of amide proton chemical shift and its correlation with chemical shift deviation from random coil was performed for CfAFP-501, a hyperactive insect AFP. A good correlation between the two parameters was observed for one of the two Thr rows on the ice binding surface. A significant temperature-dependent protein-solvent interaction is found to be the most probable origin for this correlation, which is consistent with a scenario of hydrophobic hydration on the ice binding surface. In accordance with this finding, rotational correlation time analyses combined with relaxation dispersion measurements reveals a weak dimer formation through ice binding surface at room temperature and a population shift of dimer to monomer at low temperature, suggesting hydrophobic effect involved in dimer formation and hence hydrophobic hydration on the ice binding surface of the protein. Our finding of hydrophobic hydration on the ice binding surface provides a test for existing simulation studies. The occurrence of hydrophobic hydration on the ice binding surface is likely unnecessary for enhancing protein-ice binding affinity which is achieved by a tight H-bonding network. Subsequently, we speculate that the hydrophobic hydration occurring on the ice binding surface plays a role in facilitating protein-ice recognition by lowering the kinetic barrier as suggested by some simulation studies.
Threonine side chain conformational population distribution of a type I antifreeze protein on interacting with ice surface studied via (13)C-(15)N dynamic REDOR NMR.
Threonine side chain conformational population distribution of a type I antifreeze protein on interacting with ice surface studied via (13)C-(15)N dynamic REDOR NMR.
Threonine side chain conformational population distribution of a type I antifreeze protein on interacting with ice surface studied via (13)C-(15)N dynamic REDOR NMR.
Solid State Nucl Magn Reson. 2011 Mar 23;
Authors: Mao Y, Jeong M, Wang T, Ba Y
Antifreeze proteins (AFPs) provide survival mechanism for species living in subzero environments by lowering the freezing points of their...
nmrlearner
Journal club
0
04-08-2011 10:00 AM
[NMR paper] Hydrogen bonding on the ice-binding face of a beta-helical antifreeze protein indicat
Hydrogen bonding on the ice-binding face of a beta-helical antifreeze protein indicated by amide proton NMR chemical shifts.
Related Articles Hydrogen bonding on the ice-binding face of a beta-helical antifreeze protein indicated by amide proton NMR chemical shifts.
Biochemistry. 2004 Oct 19;43(41):13012-7
Authors: Daley ME, Graether SP, Sykes BD
The dependence of amide proton chemical shifts on temperature is used as an indication of the hydrogen bonding properties in a protein. The amide proton temperature coefficients of the beta-helical...
nmrlearner
Journal club
0
11-24-2010 10:01 PM
[NMR paper] Identification of the DNA binding surface of H-NS protein from Escherichia coli by he
Identification of the DNA binding surface of H-NS protein from Escherichia coli by heteronuclear NMR spectroscopy.
Related Articles Identification of the DNA binding surface of H-NS protein from Escherichia coli by heteronuclear NMR spectroscopy.
FEBS Lett. 1999 Jul 16;455(1-2):63-9
Authors: Shindo H, Ohnuki A, Ginba H, Katoh E, Ueguchi C, Mizuno T, Yamazaki T
The DNA binding domain of H-NS protein was studied with various N-terminal deletion mutant proteins and identified by gel retardation assay and heteronuclear 2D- and 3D-NMR...
nmrlearner
Journal club
0
11-18-2010 08:31 PM
Protein-ice interaction of an antifreeze protein observed with solid-state NMR [Chemi
Protein-ice interaction of an antifreeze protein observed with solid-state NMR
Siemer, A. B., Huang, K.-Y., McDermott, A. E....
Date: 2010-10-12
NMR on frozen solutions is an ideal method to study fundamental questions of macromolecular hydration, because the hydration shell of many biomolecules does not freeze together with bulk solvent. In the present study, we present previously undescribed NMR methods to study the interactions of proteins with their hydration shell and the ice lattice in frozen solution. We applied these methods to compare solvent interaction of an ice-binding...
nmrlearner
Journal club
0
10-13-2010 04:10 AM
Protein-ice interaction of an antifreeze protein observed with solid-state NMR.
Protein-ice interaction of an antifreeze protein observed with solid-state NMR.
Related Articles Protein-ice interaction of an antifreeze protein observed with solid-state NMR.
Proc Natl Acad Sci U S A. 2010 Sep 30;
Authors: Siemer AB, Huang KY, McDermott AE
NMR on frozen solutions is an ideal method to study fundamental questions of macromolecular hydration, because the hydration shell of many biomolecules does not freeze together with bulk solvent. In the present study, we present previously undescribed NMR methods to study the interactions...
nmrlearner
Journal club
0
10-05-2010 12:11 PM
[NMR paper] Identification by NMR of the binding surface for the histidine-containing phosphocarr
Identification by NMR of the binding surface for the histidine-containing phosphocarrier protein HPr on the N-terminal domain of enzyme I of the Escherichia coli phosphotransferase system.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Identification by NMR of the binding surface for the histidine-containing phosphocarrier protein HPr on the N-terminal domain of enzyme I of the Escherichia coli phosphotransferase system.
Biochemistry. 1997 Apr 15;36(15):4393-8
Authors: Garrett DS, Seok YJ,...
nmrlearner
Journal club
0
08-22-2010 03:31 PM
[NMR paper] Identification by NMR of the binding surface for the histidine-containing phosphocarr
Identification by NMR of the binding surface for the histidine-containing phosphocarrier protein HPr on the N-terminal domain of enzyme I of the Escherichia coli phosphotransferase system.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Identification by NMR of the binding surface for the histidine-containing phosphocarrier protein HPr on the N-terminal domain of enzyme I of the Escherichia coli phosphotransferase system.
Biochemistry. 1997 Apr 15;36(15):4393-8
Authors: Garrett DS, Seok YJ,...
nmrlearner
Journal club
0
08-22-2010 03:03 PM
[NMR paper] The identification of cation-binding domains on the surface of microsomal cytochrome
The identification of cation-binding domains on the surface of microsomal cytochrome b5 using 1H-NMR paramagnetic difference spectroscopy.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles The identification of cation-binding domains on the surface of microsomal cytochrome b5 using 1H-NMR paramagnetic difference spectroscopy.
Eur J Biochem. 1992 Jan 15;203(1-2):211-23
Authors: Whitford D
One-dimensional and two-dimensional 1H-NMR...