BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 02-06-2021, 01:18 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,795
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR Characterization of Angiogenin Variants and tRNAAla Products Impacting Aberrant Protein Oligomerization.

NMR Characterization of Angiogenin Variants and tRNAAla Products Impacting Aberrant Protein Oligomerization.

Related Articles NMR Characterization of Angiogenin Variants and tRNAAla Products Impacting Aberrant Protein Oligomerization.

Int J Mol Sci. 2021 Feb 01;22(3):

Authors: Fagagnini A, Garavís M, Gómez-Pinto I, Fasoli S, Gotte G, Laurents DV

Abstract
Protein oligomerization is key to countless physiological processes, but also to abnormal amyloid conformations implicated in over 25 mortal human diseases. Human Angiogenin (h-ANG), a ribonuclease A family member, produces RNA fragments that regulate ribosome formation, the creation of new blood vessels and stress granule function. Too little h-ANG activity leads to abnormal protein oligomerization, resulting in Amyotrophic Lateral Sclerosis (ALS) or Parkinson's disease. While a score of disease linked h-ANG mutants has been studied by X-ray diffraction, some elude crystallization. There is also a debate regarding the structure that RNA fragments adopt after cleavage by h-ANG. Here, to better understand the beginning of the process that leads to aberrant protein oligomerization, the solution secondary structure and residue-level dynamics of WT h-ANG and two mutants i.e., H13A and R121C, are characterized by multidimensional heteronuclear NMR spectroscopy under near-physiological conditions. All three variants are found to adopt well folded and highly rigid structures in the solution, although the elements of secondary structure are somewhat shorter than those observed in crystallography studies. R121C alters the environment of nearby residues only. By contrast, the mutation H13A affects local residues as well as nearby active site residues K40 and H114. The conformation characterization by CD and 1D 1H NMR spectroscopies of tRNAAla before and after h-ANG cleavage reveals a retention of the duplex structure and little or no G-quadruplex formation.


PMID: 33535464 [PubMed - in process]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] In situ characterization of advanced glycation end products (AGEs) in collagen and model extracellular matrix by solid state NMR.
In situ characterization of advanced glycation end products (AGEs) in collagen and model extracellular matrix by solid state NMR. In situ characterization of advanced glycation end products (AGEs) in collagen and model extracellular matrix by solid state NMR. Chem Commun (Camb). 2017 Dec 01;: Authors: Li R, Rajan R, Wong WCV, Reid DG, Duer MJ, Somovilla VJ, Martinez-Saez N, Bernardes GJL, Hayward R, Shanahan CM Abstract Non-enzymatic glycation of extracellular matrix with (U-13C5)-d-ribose-5-phosphate (R5P), enables in situ 2D...
nmrlearner Journal club 0 12-02-2017 02:54 PM
[NMR paper] NMR study of Met-1 human Angiogenin: (1)H, (13)C, (15)N backbone and side-chain resonance assignment.
NMR study of Met-1 human Angiogenin: (1)H, (13)C, (15)N backbone and side-chain resonance assignment. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--production.springer.de-OnlineResources-Logos-springerlink.gif Related Articles NMR study of Met-1 human Angiogenin: (1)H, (13)C, (15)N backbone and side-chain resonance assignment. Biomol NMR Assign. 2016 Sep 13; Authors: Tsika AC, Chatzileontiadou DS, Leonidas DD, Spyroulias GA Abstract Here, we report the high yield expression and preliminary structural...
nmrlearner Journal club 0 09-22-2016 06:31 AM
[NMR paper] Purification and Characterization of Recombinant N-Terminally Pyroglutamate-Modified Amyloid-? Variants and Structural Analysis by Solution NMR Spectroscopy.
Purification and Characterization of Recombinant N-Terminally Pyroglutamate-Modified Amyloid-? Variants and Structural Analysis by Solution NMR Spectroscopy. Related Articles Purification and Characterization of Recombinant N-Terminally Pyroglutamate-Modified Amyloid-? Variants and Structural Analysis by Solution NMR Spectroscopy. PLoS One. 2015;10(10):e0139710 Authors: Dammers C, Gremer L, Neudecker P, Demuth HU, Schwarten M, Willbold D Abstract Alzheimer's disease (AD) is the leading cause of dementia in the elderly and is...
nmrlearner Journal club 0 10-06-2015 10:39 PM
[NMR paper] Characterization of potential degradation products in a PEGylating reagent 20kDa monomethoxy polyethylene glycol propionaldehyde by RP-HPLC, APCI-MS and NMR.
Characterization of potential degradation products in a PEGylating reagent 20kDa monomethoxy polyethylene glycol propionaldehyde by RP-HPLC, APCI-MS and NMR. Related Articles Characterization of potential degradation products in a PEGylating reagent 20kDa monomethoxy polyethylene glycol propionaldehyde by RP-HPLC, APCI-MS and NMR. J Pharm Biomed Anal. 2013 Nov 15;89C:221-226 Authors: Zhang H, Wilson J, Zhang J, Luo Y Abstract Ensuring quality of PEGylating reagents is essential for the successful development and manufacturing of PEGylated...
nmrlearner Journal club 0 12-10-2013 05:36 PM
Magnetic resonance diffusion and relaxation characterization of water in the unfrozen vein network in polycrystalline ice and its response to microbial metabolic products
Magnetic resonance diffusion and relaxation characterization of water in the unfrozen vein network in polycrystalline ice and its response to microbial metabolic products December 2012 Publication year: 2012 Source:Journal of Magnetic Resonance, Volume 225</br> </br> Polycrystalline ice, as found in glaciers and the ice sheets of Antarctica, is a low porosity porous media consisting of a complicated and dynamic pore structure of liquid-filled intercrystalline veins within a solid ice matrix. In this work, Nuclear Magnetic Resonance measurements of relaxation rates and...
nmrlearner Journal club 0 12-15-2012 09:51 AM
Magnetic resonance diffusion and relaxation characterization of water in the unfrozen vein network in polycrystalline ice and its response to microbial metabolic products
Magnetic resonance diffusion and relaxation characterization of water in the unfrozen vein network in polycrystalline ice and its response to microbial metabolic products December 2012 Publication year: 2012 Source:Journal of Magnetic Resonance, Volume 225</br> </br> Polycrystalline ice, as found in glaciers and the ice sheets of Antarctica, is a low porosity porous media consisting of a complicated and dynamic pore structure of liquid-filled intercrystalline veins within a solid ice matrix. In this work, Nuclear Magnetic Resonance measurements of relaxation rates and...
nmrlearner Journal club 0 12-01-2012 06:10 PM
Magnetic Resonance Diffusion and Relaxation Characterization of Water in the Unfrozen Vein Network in Polycrystalline Ice and its Response to Microbial Metabolic Products
Magnetic Resonance Diffusion and Relaxation Characterization of Water in the Unfrozen Vein Network in Polycrystalline Ice and its Response to Microbial Metabolic Products Publication year: 2012 Source:Journal of Magnetic Resonance</br> Jennifer R. Brown, Timothy I. Brox, Sarah J. Vogt, Joseph D. Seymour, Mark Skidmore, Sarah L. Codd</br> Polycrystalline ice, as found in glaciers and the ice sheets of Antarctica, is a low porosity porous media consisting of a complicated and dynamic pore structure of liquid-filled intercrystalline veins within a solid ice matrix. In...
nmrlearner Journal club 0 10-05-2012 09:10 AM
[NMR paper] Characterization of the structure and dynamics of amyloidogenic variants of human lys
Characterization of the structure and dynamics of amyloidogenic variants of human lysozyme by NMR spectroscopy. Related Articles Characterization of the structure and dynamics of amyloidogenic variants of human lysozyme by NMR spectroscopy. Protein Sci. 2001 Dec;10(12):2525-30 Authors: Chamberlain AK, Receveur V, Spencer A, Redfield C, Dobson CM The structures and dynamics of the native states of two mutational variants of human lysozyme, I56T and D67H, both associated with non-neuropathic systemic amyloidosis, have been investigated by NMR...
nmrlearner Journal club 0 11-19-2010 08:44 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:39 AM.


Map