BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 07-24-2013, 04:52 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR Binding and Crystal Structure Reveal that Intrinsically-unstructured Regulatory Domain Auto-inhibits PAK4 by a Mechanism Different for that of PAK1.

NMR Binding and Crystal Structure Reveal that Intrinsically-unstructured Regulatory Domain Auto-inhibits PAK4 by a Mechanism Different for that of PAK1.

NMR Binding and Crystal Structure Reveal that Intrinsically-unstructured Regulatory Domain Auto-inhibits PAK4 by a Mechanism Different for that of PAK1.

Biochem Biophys Res Commun. 2013 Jul 19;

Authors: Wang W, Lim L, Baskaran Y, Manser E, Song J

Abstract
Six human PAK members are classified into groups I (PAKs 1-3) and II (PAK4-6). Previously, only group I PAKs were thought to be auto-inhibited but very recently PAK4, the prototype of group II PAKs, has also been shown to be auto-inhibited by its N-terminal regulatory domain. However, the complete auto-inhibitory domain (AID) sequence remains undefined and the mechanism underlying its auto-inhibition is largely elusive. Here, the N-terminal regulatory domain of PAK4 sufficient for auto-inhibiting and binding Cdc42/Rac was characterized to be intrinsically unstructured, but nevertheless we identified the entire AID sequence by NMR. Strikingly, an AID peptide was derived by deleting the binding-unnecessary residues, which has a Kd of 320 nM to the PAK4 catalytic domain. Consequently, the PAK4 crystal structure complexed with the entire AID has been determined, which reveals that the complete kinase cleft is occupied by 20 AID residues composed of an N-terminal ?-helix and a previously-identified pseudosubstrate motif, thus achieving auto-inhibition. Our study reveals that PAK4 is auto-inhibited by a novel mechanism which is completely different from that for PAK1, thus bearing critical implications for design of inhibitors specific for group II PAKs.


PMID: 23876315 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] A new strategy for sequential assignment of intrinsically unstructured proteins based on 15N single isotope labelling
A new strategy for sequential assignment of intrinsically unstructured proteins based on 15N single isotope labelling Publication date: Available online 23 July 2013 Source:Journal of Magnetic Resonance</br> Author(s): Juan Lopez , Puneet Ahuja , Melanie Gérard , Jean Michel Wieruszeski , Guy Lippens</br> We describe a new efficient strategy for the sequential assignment of amide resonances of a conventional 15N-1H HSQC spectrum of intrinsically unfolded proteins, based on composite NOESY-TOCSY and TOCSY-NOESY mixing times. These composite mixing times lead to a...
nmrlearner Journal club 0 07-23-2013 09:52 PM
The calponin regulatory region is intrinsically unstructured: novel insight into actin-calponin and calmodulin-calponin interfaces using NMR spectroscopy.
The calponin regulatory region is intrinsically unstructured: novel insight into actin-calponin and calmodulin-calponin interfaces using NMR spectroscopy. The calponin regulatory region is intrinsically unstructured: novel insight into actin-calponin and calmodulin-calponin interfaces using NMR spectroscopy. Biophys J. 2011 Apr 6;100(7):1718-28 Authors: Pfuhl M, Al-Sarayreh S, El-Mezgueldi M Calponin is an actin- and calmodulin-binding protein believed to regulate the function of actin. Low-resolution studies based on proteolysis established that...
nmrlearner Journal club 0 04-06-2011 10:54 AM
Solution NMR and X-ray crystal structures of membrane-associated Lipoprotein-17 domain reveal a novel fold.
Solution NMR and X-ray crystal structures of membrane-associated Lipoprotein-17 domain reveal a novel fold. Solution NMR and X-ray crystal structures of membrane-associated Lipoprotein-17 domain reveal a novel fold. J Struct Funct Genomics. 2010 Dec 14; Authors: Mani R, Vorobiev S, Swapna GV, Neely H, Janjua H, Ciccosanti C, Xiao R, Acton TB, Everett JK, Hunt J, Montelione GT The conserved Lipoprotein-17 domain of membrane-associated protein Q9PRA0_UREPA from Ureaplasma parvum was selected for structure determination by the Northeast Structural...
nmrlearner Journal club 0 12-15-2010 12:03 PM
[NMR paper] NMR relaxation studies on the hydrate layer of intrinsically unstructured proteins.
NMR relaxation studies on the hydrate layer of intrinsically unstructured proteins. Related Articles NMR relaxation studies on the hydrate layer of intrinsically unstructured proteins. Biophys J. 2005 Mar;88(3):2030-7 Authors: Bokor M, Csizmók V, Kovács D, Bánki P, Friedrich P, Tompa P, Tompa K Intrinsically unstructured/disordered proteins (IUPs) exist in a disordered and largely solvent-exposed, still functional, structural state under physiological conditions. As their function is often directly linked with structural disorder,...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] NMR structure of the (1-51) N-terminal domain of the HIV-1 regulatory protein Vpr.
NMR structure of the (1-51) N-terminal domain of the HIV-1 regulatory protein Vpr. Related Articles NMR structure of the (1-51) N-terminal domain of the HIV-1 regulatory protein Vpr. Eur J Biochem. 1999 Dec;266(2):359-69 Authors: Wecker K, Roques BP The human immunodeficiency virus type 1 (HIV-1) genome encodes a highly conserved 16 kDa regulatory gene product, Vpr (viral protein of regulation, 96 amino acid residues), which is incorporated into virions, in quantities equivalent to those of the viral Gag proteins. In the infected cells, Vpr is...
nmrlearner Journal club 0 11-18-2010 08:31 PM
[NMR paper] The negative-acting NMR regulatory protein of Neurospora crassa binds to and inhibits
The negative-acting NMR regulatory protein of Neurospora crassa binds to and inhibits the DNA-binding activity of the positive-acting nitrogen regulatory protein NIT2. Related Articles The negative-acting NMR regulatory protein of Neurospora crassa binds to and inhibits the DNA-binding activity of the positive-acting nitrogen regulatory protein NIT2. Biochemistry. 1995 Jul 11;34(27):8861-8 Authors: Xiao X, Fu YH, Marzluf GA Structural genes of the nitrogen regulatory circuit of the filamentous fungus Neurospora crassa are under the control of...
nmrlearner Journal club 0 08-22-2010 03:50 AM
[NMR paper] Two crystal structures of the B1 immunoglobulin-binding domain of streptococcal prote
Two crystal structures of the B1 immunoglobulin-binding domain of streptococcal protein G and comparison with NMR. Related Articles Two crystal structures of the B1 immunoglobulin-binding domain of streptococcal protein G and comparison with NMR. Biochemistry. 1994 Apr 19;33(15):4721-9 Authors: Gallagher T, Alexander P, Bryan P, Gilliland GL The structure of the 56-residue B1 immunoglobulin-binding domain from streptococcal protein G has been determined in two different crystal forms. The crystal structures were deduced by molecular...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] NMR structure of the (52-96) C-terminal domain of the HIV-1 regulatory protein Vpr: m
NMR structure of the (52-96) C-terminal domain of the HIV-1 regulatory protein Vpr: molecular insights into its biological functions. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles NMR structure of the (52-96) C-terminal domain of the HIV-1 regulatory protein Vpr: molecular insights into its biological functions. J Mol Biol. 1999 Feb 5;285(5):2105-17 Authors: SchĂźler W, Wecker K, de Rocquigny H, Baudat Y, Sire J, Roques BP The HIV-1 regulatory protein Vpr (96 amino...
nmrlearner Journal club 0 08-21-2010 04:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:10 AM.


Map