BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-07-2013, 12:13 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,734
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR-Based Simulation Studies of Pf1 Coat Protein in Explicit Membranes

NMR-Based Simulation Studies of Pf1 Coat Protein in Explicit Membranes

Publication date: 6 August 2013
Source:Biophysical Journal, Volume 105, Issue 3

Author(s): Xi Cheng , Sunhwan Jo , Francesca*M. Marassi , Wonpil Im

As time- and ensemble-averaged measures, NMR observables contain information about both protein structure and dynamics. This work represents a computational study to extract such information for membrane proteins from orientation-dependent NMR observables: solid-state NMR chemical shift anisotropy and dipolar coupling, and solution NMR residual dipolar coupling. We have performed NMR-restrained molecular dynamics simulations to refine the structure of the membrane-bound form of Pf1 coat protein in explicit lipid bilayers using the recently measured chemical shift anisotropy, dipolar coupling, and residual dipolar coupling data. From the simulations, we have characterized detailed protein-lipid interactions and explored the dynamics. All simulations are stable and the NMR restraints are well satisfied. The C-terminal transmembrane (TM) domain of Pf1 finds its optimal position in the membrane quickly (within 6*ns), illustrating efficient solvation of TM domains in explicit bilayer environments. Such rapid convergence also leads to well-converged interaction patterns between the TM helix and the membrane, which clearly show the interactions of interfacial membrane-anchoring residues with the lipids. For the N-terminal periplasmic helix of Pf1, we identify a stable, albeit dynamic, helix orientation parallel to the membrane surface that satisfies the amphiphatic nature of the helix in an explicit lipid bilayer. Such detailed information cannot be obtained solely from NMR observables. Therefore, the present simulations illustrate the usefulness of NMR-restrained MD refinement of membrane protein structure in explicit membranes.







More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes.
Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-custom-pnas_full.gif Related Articles Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes. Proc Natl Acad Sci U S A. 2013 Feb 12;110(7):2490-5 Authors: Arges CG, Ramani V Abstract Anion exchange membranes (AEMs) find...
nmrlearner Journal club 0 04-09-2013 06:31 PM
[NMR paper] Structure of hen egg-white lysozyme solvated in TFE/water: a molecular dynamics simulation study based on NMR data.
Structure of hen egg-white lysozyme solvated in TFE/water: a molecular dynamics simulation study based on NMR data. Related Articles Structure of hen egg-white lysozyme solvated in TFE/water: a molecular dynamics simulation study based on NMR data. J Biomol NMR. 2013 Mar 14; Authors: Eichenberger AP, van Gunsteren WF, Smith LJ Abstract Various experimental studies of hen egg white lysozyme (HEWL) in water and TFE/water clearly indicate structural differences between the native state and TFE state of HEWL, e.g. the helical content of the...
nmrlearner Journal club 0 03-16-2013 03:18 PM
(31)P NMR and AFM studies on the destabilization of cell and model membranes by the major bovine seminal plasma protein, PDC-109.
(31)P NMR and AFM studies on the destabilization of cell and model membranes by the major bovine seminal plasma protein, PDC-109. Related Articles (31)P NMR and AFM studies on the destabilization of cell and model membranes by the major bovine seminal plasma protein, PDC-109. IUBMB Life. 2010 Nov;62(11):841-51 Authors: Damai RS, Sankhala RS, Anbazhagan V, Swamy MJ The effect of PDC-109 binding to dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylglycerol (DPPG) multilamellar vesicles (MLVs) and supported membranes was investigated by...
nmrlearner Journal club 0 12-01-2010 04:41 PM
[NMR paper] Structure and dynamics of the M13 coat signal sequence in membranes by multidimension
Structure and dynamics of the M13 coat signal sequence in membranes by multidimensional high-resolution and solid-state NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_120x27.gif Related Articles Structure and dynamics of the M13 coat signal sequence in membranes by multidimensional high-resolution and solid-state NMR spectroscopy. Proteins. 1997 Apr;27(4):481-92 Authors: Bechinger B The polypeptide corresponding to the signal sequence of the...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] Structure and dynamics of the M13 coat signal sequence in membranes by multidimension
Structure and dynamics of the M13 coat signal sequence in membranes by multidimensional high-resolution and solid-state NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_120x27.gif Related Articles Structure and dynamics of the M13 coat signal sequence in membranes by multidimensional high-resolution and solid-state NMR spectroscopy. Proteins. 1997 Apr;27(4):481-92 Authors: Bechinger B The polypeptide corresponding to the signal sequence of the...
nmrlearner Journal club 0 08-22-2010 03:03 PM
[NMR paper] NMR studies of the major coat protein of bacteriophage M13. Structural information of
NMR studies of the major coat protein of bacteriophage M13. Structural information of gVIIIp in dodecylphosphocholine micelles. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles NMR studies of the major coat protein of bacteriophage M13. Structural information of gVIIIp in dodecylphosphocholine micelles. Eur J Biochem. 1995 Sep 1;232(2):490-500 Authors: Papavoine CH, Aelen JM, Konings RN, Hilbers CW, Van de Ven FJ The membrane-bound...
nmrlearner Journal club 0 08-22-2010 03:50 AM
[NMR paper] NMR studies of the structure and dynamics of membrane-bound bacteriophage Pf1 coat pr
NMR studies of the structure and dynamics of membrane-bound bacteriophage Pf1 coat protein. Related Articles NMR studies of the structure and dynamics of membrane-bound bacteriophage Pf1 coat protein. Science. 1991 May 31;252(5010):1303-5 Authors: Shon KJ, Kim Y, Colnago LA, Opella SJ Filamentous bacteriophage coat protein undergoes a remarkable structural transition during the viral assembly process as it is transferred from the membrane environment of the cell, where it spans the phospholipid bilayer, to the newly extruded virus particles....
nmrlearner Journal club 0 08-21-2010 11:16 PM
Structure refinement based on adaptive restraints using local-elevation simulation
Biomolecular structure refinement based on adaptive restraints using local-elevation simulation Markus Christen, Bettina Keller and Wilfred F. van Gunsteren Journal of Biomolecular NMR; 2007; 39(4) pp 265 - 273 Abstract: Introducing experimental values as restraints into molecular dynamics (MD) simulation to bias the values of particular molecular properties, such as nuclear Overhauser effect intensities or distances, dipolar couplings, 3 J-coupling constants, chemical shifts or crystallographic structure factors, towards experimental values is a widely used structure refinement...
linawaed Journal club 0 08-04-2008 04:29 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:40 PM.


Map