Diversity and robustness of NMR based screening methods make these techniques highly attractive as tools for drug discovery. Although not all screening techniques discussed here may be applicable to any given target, there is however a good chance that at least one of the described methods will prove productive in finding several medium affinity ligands. A comparison of each of the methods is given in Table 1. For drug targets of molecular weight < 30 kDa SAR by NMR appears to be the method of choice since it yields detailed information about the location of the binding site. It remains to be seen whether 15N-1H-TROSY based screening techniques will prove useful for larger protein targets, especially considering the added effort needed for spectral assignment and the increased complexity due to spectral overlap. Nevertheless, with the application of new cryo-cooled NMR probes, 15N-1H-HSQC based screening can now be considered a high throughput method. Ligand-based NMR screening methods can be used for protein targets of virtually any size, but are restricted in the ligand's binding affinity range. Because sufficient ligand-protein dissociation rates are needed, only binding of ligands with low (milimolar) to intermediate (micromolar) affinities is detectable. It is expected that cryo-cooled NMR probe technology will also advance ligand detected NMR screening to the high throughput level. Certainly protein and ligand concentrations can be lowered drastically and experiment times can be shortened with increased sensitivity. However, spectral overlap will be of major concern when mixtures of up to 100 compounds are to be screened. For such applications only techniques for which the signals of bound ligands survive will be useful, and sophisticated software will be needed to deconvolute the spectra of multiple bound ligands. Although only ligands with medium to low affinities can be found, ligand based NMR screening has been used as an effective prescreening tool for assay based high throughput screening. Identifying a large ensemble of medium affinity ligands may not only aid in building a binding site pharmacophore model (see Chapter 11), but also may yield crucial information for overcoming tissue availability, toxicity, or even intellectual property related problems. Although NMR based screening is only one of the more recent additions to the bag of tools used in drug discovery [1, 2], its simplicity and wide range of application (including protein-protein and protein-nucleic acid interactions) has attracted much attention. Advances in NMR instrumentation and methodology have already paved the road for NMR based screening to become a high throughput technique. In addition to this, NMR is exceptional in the amount of detailed structural [table: see text] information it can provide. Not only can NMR readily reveal the binding site (15N-1H-HSQC screening) or the conformation of the bound ligand (transfer NOE), but it can also supply information that enables precise docking of the ligand to the protein's binding pocket (isotope-filtered NOESY). NMR data can therefore provide a natural connection between experimental HTS and combinatorial chemistry techniques with computational methods such as 3D-database searching (see Chapter 10), virtual screening (docking) and structure-based ligand design (see also Chapter 8).
Fragment-based discovery of novel thymidylate synthase leads by NMR screening and group epitope mapping.
Fragment-based discovery of novel thymidylate synthase leads by NMR screening and group epitope mapping.
Fragment-based discovery of novel thymidylate synthase leads by NMR screening and group epitope mapping.
Chem Biol Drug Des. 2010 Sep 1;76(3):218-33
Authors: Begley DW, Zheng S, Varani G
Solution-state nuclear magnetic resonance (NMR) is a versatile tool for the study of binding interactions between small molecules and macromolecular targets. We applied ligand-based NMR techniques to the study of human thymidylate synthase (hTS) using known...
nmrlearner
Journal club
0
01-05-2011 09:51 PM
[NMR paper] NMR-based methods and strategies for drug discovery.
NMR-based methods and strategies for drug discovery.
Related Articles NMR-based methods and strategies for drug discovery.
Chem Soc Rev. 2003 Nov;32(6):365-72
Authors: Salvatella X, Giralt E
Nuclear Magnetic Resonance (NMR) spectroscopy has long been a favourite tool of chemists interested in host-guest systems because it permits access to a wealth of information about the molecular recognition reaction. NMR has evolved dramatically in the last 15 years and, in parallel with the development of NMR methods for the determination of protein...
nmrlearner
Journal club
0
11-24-2010 09:16 PM
[NMR paper] The SHAPES strategy: an NMR-based approach for lead generation in drug discovery.
The SHAPES strategy: an NMR-based approach for lead generation in drug discovery.
Related Articles The SHAPES strategy: an NMR-based approach for lead generation in drug discovery.
Chem Biol. 1999 Oct;6(10):755-69
Authors: Fejzo J, Lepre CA, Peng JW, Bemis GW, Ajay , Murcko MA, Moore JM
BACKGROUND: Recently, it has been shown that nuclear magnetic resonance (NMR) may be used to identify ligands that bind to low molecular weight protein drug targets. Recognizing the utility of NMR as a very sensitive method for detecting binding, we have...
nmrlearner
Journal club
0
11-18-2010 08:31 PM
NMR Screening and Hit Validation in Fragment Based Drug Discovery.
NMR Screening and Hit Validation in Fragment Based Drug Discovery.
Related Articles NMR Screening and Hit Validation in Fragment Based Drug Discovery.
Curr Top Med Chem. 2010 Sep 2;
Authors: Campos-Olivas R
Over the past three decades nuclear magnetic resonance spectroscopy has been developed into a mature technique for the characterization of interactions of small molecule ligands with their corresponding protein and nucleic acid receptors. In fact, a significant number of industrial and academic laboratories employ NMR for screening small...
nmrlearner
Journal club
0
09-03-2010 02:30 PM
[BMNRC community] NMR-based screening: a powerful tool in fragment-based drug discovery
NMR-based screening: a powerful tool in fragment-based drug discovery
http://www.rsc.org/delivery/_ArticleLinking/DisplayHTMLArticleforfree.cfm?JournalCode=AN&Year=2007&ManuscriptID=b709658p&Iss=7
Go to BMNRC community to find more info about this topic.
nmrlearner
News from other NMR forums
0
09-02-2010 04:59 AM
[NMR paper] NMR-based discovery of lead inhibitors that block DNA binding of the human papillomav
NMR-based discovery of lead inhibitors that block DNA binding of the human papillomavirus E2 protein.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles NMR-based discovery of lead inhibitors that block DNA binding of the human papillomavirus E2 protein.
J Med Chem. 1997 Sep 26;40(20):3144-50
Authors: Hajduk PJ, Dinges J, Miknis GF, Merlock M, Middleton T, Kempf DJ, Egan DA, Walter KA, Robins TS, Shuker SB, Holzman TF, Fesik SW
The E2 protein is required for the replication of human...
nmrlearner
Journal club
0
08-22-2010 05:08 PM
[NMR paper] NMR screening in drug discovery.
NMR screening in drug discovery.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles NMR screening in drug discovery.
Curr Opin Biotechnol. 1999 Feb;10(1):54-8
Authors: Moore JM
NMR methods in drug discovery have traditionally been used to obtain structural information for drug targets or target-ligand complexes. Recently, it has been shown that NMR may be used as an alternative approach for identification of ligands that bind to protein drug targets, shifting the emphasis...