BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 04-20-2020, 05:10 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,734
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR-based metabolomic profile of hypercholesterolemic human sera: Relationship with in vitro gene expression?

NMR-based metabolomic profile of hypercholesterolemic human sera: Relationship with in vitro gene expression?

Related Articles NMR-based metabolomic profile of hypercholesterolemic human sera: Relationship with in vitro gene expression?

PLoS One. 2020;15(4):e0231506

Authors: Grimaldi M, Palisi A, Marino C, Montoro P, Capasso A, Novi S, Tecce MF, D'Ursi AM

Abstract
Hypercholesterolaemia is considered an important cause of atherosclerotic cardiovascular disease. In a previous investigation, we demonstrated that cultured hepatoma cells treated with hypercholesterolaemic sera compared with cells treated with normocholesterolaemic sera show overexpression of mRNAs related to mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme A synthase (HMGCS2). In the present work, using an NMR metabolomic analysis, we demonstrate that the hypercholesterolaemic blood sera previously used to treat cultured hepatoma cells are characterized by a metabolomic profile that is significantly different from the normocholesterolaemic sera. Acetate, acetone, 2-hydroxybutyrate, cysteine, valine, and glutamine are the metabolites distinguishing the two groups. Abnormalities in the concentrations of these metabolites reflect alterations in energy-related pathways, such as pantothenate and CoA biosynthesis, pyruvate, glycolysis/gluconeogenesis, the citrate cycle, and ketone bodies. Regarding ketone bodies, the pathway is regulated by HMGCS2; therefore, serum samples previously found to be able to increase HMGCS2 mRNA levels in cultured cells also contain higher amounts of the metabolites of its encoded enzyme protein product.


PMID: 32298312 [PubMed - in process]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Relationship between recombinant protein expression and host metabolome as determined by two-dimensional NMR spectroscopy.
Relationship between recombinant protein expression and host metabolome as determined by two-dimensional NMR spectroscopy. Related Articles Relationship between recombinant protein expression and host metabolome as determined by two-dimensional NMR spectroscopy. PLoS One. 2017;12(5):e0177233 Authors: Chae YK, Kim SH, Markley JL Abstract Escherichia coli has been the most widely used host to produce large amounts of heterologous proteins. However, given an input plasmid DNA, E. coli may produce soluble protein, produce only...
nmrlearner Journal club 0 05-10-2017 09:55 PM
[NMR paper] In*vitro mutagenicity, NMR metabolite characterization of azo and triphenylmethanes dyes by adherents bacteria and the role of the "cna" adhesion gene in activated sludge.
In*vitro mutagenicity, NMR metabolite characterization of azo and triphenylmethanes dyes by adherents bacteria and the role of the "cna" adhesion gene in activated sludge. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles In*vitro mutagenicity, NMR metabolite characterization of azo and triphenylmethanes dyes by adherents bacteria and the role of the "cna" adhesion gene in activated sludge. Microb Pathog. 2017 Feb;103:29-39 Authors: Ayed L, Bakir K, Ben Mansour...
nmrlearner Journal club 0 04-07-2017 02:45 PM
Students bring 'fresh insights' to scientific research on gene expression, deep neural networks and more - Clark University News Hub
http://www.bionmr.com//t1.gstatic.com/images?q=tbn:ANd9GcTVd062HSNkufpFLOXoHxhOr1s0onXKhPyi91bbXm51srwsuet1eajYCvbuLO7yooXH_P0TNwUX Clark University News Hub <img alt="" height="1" width="1"> Students bring 'fresh insights' to scientific research on gene expression, deep neural networks and more Clark University News Hub ... biochemistry and molecular biology senior Pinky Htun '17 of Myanmar spent June and July isolating, purifying and studying proteins using state-of-the-art lab equipment, including a high-speed centrifuge and a nuclear magnetic resonance spectrometer. Students...
nmrlearner Online News 0 08-25-2016 05:42 AM
[NMR paper] A Facile method for expression and purification of (15)N isotope-labeled human Alzheimer's ?-amyloid peptides from E. coli for NMR-based structural analysis.
A Facile method for expression and purification of (15)N isotope-labeled human Alzheimer's ?-amyloid peptides from E. coli for NMR-based structural analysis. Related Articles A Facile method for expression and purification of (15)N isotope-labeled human Alzheimer's ?-amyloid peptides from E. coli for NMR-based structural analysis. Protein Expr Purif. 2015 Jul 28; Authors: Sharma SC, Armand T, Aurelia Ball K, Chen A, Pelton JG, Wemmer DE, Head-Gordon T Abstract Alzheimer's disease (AD) is a progressive neurodegenerative disease...
nmrlearner Journal club 0 08-02-2015 08:22 PM
[NMR paper] Depletion of casein kinase I leads to a NAD(P)(+)/NAD(P)H balance-dependent metabolic adaptation as determined by NMR spectroscopy-metabolomic profile in Kluyveromyces lactis.
Depletion of casein kinase I leads to a NAD(P)(+)/NAD(P)H balance-dependent metabolic adaptation as determined by NMR spectroscopy-metabolomic profile in Kluyveromyces lactis. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Depletion of casein kinase I leads to a NAD(P)(+)/NAD(P)H balance-dependent metabolic adaptation as determined by NMR spectroscopy-metabolomic profile in Kluyveromyces lactis. Biochim Biophys Acta. 2014 Jan;1840(1):556-64 Authors: Gorietti D, Zanni...
nmrlearner Journal club 0 03-14-2014 07:34 PM
High-yield Escherichia coli-based cell-free expression of human proteins
High-yield Escherichia coli-based cell-free expression of human proteins Abstract Production of sufficient amounts of human proteins is a frequent bottleneck in structural biology. Here we describe an Escherichia coli-based cell-free system which yields mg-quantities of human proteins in N-terminal fusion constructs with the GB1 domain, which show significantly increased translation efficiency. A newly generated E. coli BL21 (DE3) RIPL-Star strain was used, which contains a variant RNase E with reduced activity and an excess of rare-codon tRNAs, and is devoid of lon and ompT protease...
nmrlearner Journal club 0 03-17-2012 07:32 AM
Expression and purification of (15)N- and (13)C-isotope labeled 40-residue human Alzheimer's ?-amyloid peptide for NMR-based structural analysis.
Expression and purification of (15)N- and (13)C-isotope labeled 40-residue human Alzheimer's ?-amyloid peptide for NMR-based structural analysis. Expression and purification of (15)N- and (13)C-isotope labeled 40-residue human Alzheimer's ?-amyloid peptide for NMR-based structural analysis. Protein Expr Purif. 2011 May 27; Authors: Long F, Cho W, Ishii Y Amyloid fibrils of Alzheimer's ?-amyloid peptide (A?) are a primary component of amyloid plaques, a hallmark of Alzheimer's disease (AD). Enormous attention has been given to the structural...
nmrlearner Journal club 0 06-07-2011 11:05 AM
[NMR paper] Recombinant gene expression and 1H NMR characteristics of the kringle (2 + 3) supermo
Recombinant gene expression and 1H NMR characteristics of the kringle (2 + 3) supermodule: spectroscopic/functional individuality of plasminogen kringle domains. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Recombinant gene expression and 1H NMR characteristics of the kringle (2 + 3) supermodule: spectroscopic/functional individuality of plasminogen kringle domains. Biochemistry. 1996 Feb 20;35(7):2357-64 Authors: Söhndel S, Hu CK, Marti D, Affolter M, Schaller J, Llinás M, Rickli EE ...
nmrlearner Journal club 0 08-22-2010 02:27 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:48 PM.


Map