Related ArticlesNMR-based Conformational Ensembles Explain pH-Gated Opening and Closing of OmpG Channel.
J Am Chem Soc. 2013 Sep 10;
Authors: Zhuang T, Chisholm C, Chen M, Tamm LK
Abstract
The outer membrane protein G (OmpG) is a monomeric 33 kDa 14-stranded ?-barrel membrane protein functioning as a non-specific porin for the uptake of oligosaccharides in E. coli. Two different crystal structures of OmpG obtained at different values of pH suggest a pH-gated pore opening mechanism. In these structures, extracellular loop 6 extends away from the barrel wall at neutral pH, but is folded back into the pore lumen at low pH, blocking transport through the pore. Loop 6 was invisible in a previously published solution NMR structure of OmpG in DPC micelles, presumably due to conformational exchange on an intermediate NMR time-scale. Here we present an NMR paramagnetic relaxation enhancement (PRE)-based approach to visualize the conformational dynamics of loop 6 and to calculate conformational ensembles that explain the pH-gated opening and closing of the OmpG channel. The different loop conformers detected by the PRE ensemble calculations were validated by disulfide cross-linking of strategically engineered cysteines and electrophysiological single channel recordings. The results indicate a more dynamically regulated channel opening and closing than previously thought and reveal additional membrane-associated conformational ensembles at pH 6.3 and 7.0. We anticipate this approach to be generally applicable to detect and characterize functionally important conformational ensembles of membrane proteins.
PMID: 24020969 [PubMed - as supplied by publisher]
Drug-Induced Conformational and Dynamical Changes of the S31N Mutant of the Influenza M2 Proton Channel Investigated by Solid-State NMR
Drug-Induced Conformational and Dynamical Changes of the S31N Mutant of the Influenza M2 Proton Channel Investigated by Solid-State NMR
Jonathan K. Williams, Daniel Tietze, Jun Wang, Yibing Wu, William F. DeGrado and Mei Hong
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja4041412/aop/images/medium/ja-2013-041412_0011.gif
Journal of the American Chemical Society
DOI: 10.1021/ja4041412
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/SJt4vbTURaE
nmrlearner
Journal club
0
06-22-2013 01:40 AM
[NMR paper] Drug-Induced Conformational and Dynamical Changes of the S31N Mutant of the Influenza M2 Proton Channel Investigated by Solid-State NMR.
Drug-Induced Conformational and Dynamical Changes of the S31N Mutant of the Influenza M2 Proton Channel Investigated by Solid-State NMR.
Related Articles Drug-Induced Conformational and Dynamical Changes of the S31N Mutant of the Influenza M2 Proton Channel Investigated by Solid-State NMR.
J Am Chem Soc. 2013 Jun 11;
Authors: Williams JK, Tietze D, Wang J, Wu Y, Degrado WF, Hong M
Abstract
The M2 protein of influenza A viruses forms a tetrameric proton channel that is targeted by the amantadine class of antiviral drugs. A S31N mutation in...
nmrlearner
Journal club
0
06-14-2013 07:31 PM
[NMR paper] Conformational Ensembles in GPCR Activation.
Conformational Ensembles in GPCR Activation.
Related Articles Conformational Ensembles in GPCR Activation.
Cell. 2013 Jan 31;152(3):385-6
Authors: Vardy E, Roth BL
Abstract
Recent advances in G-protein-coupled receptor structural biology have provided only limited insight into the active conformations of these key signaling molecules. A paper from Nygaard et*al. reveals the dynamic nature of GPCRs along the activation pathway by complementing NMR experiments with ultralong-timescale molecular dynamics simulations.
nmrlearner
Journal club
0
02-05-2013 09:51 PM
PPM: a side-chain and backbone chemical shift predictor for the assessment of protein conformational ensembles
PPM: a side-chain and backbone chemical shift predictor for the assessment of protein conformational ensembles
Abstract The combination of the wide availability of protein backbone and side-chain NMR chemical shifts with advances in understanding of their relationship to protein structure makes these parameters useful for the assessment of structural-dynamic protein models. A new chemical shift predictor (PPM) is introduced, which is solely based on physicalâ??chemical contributions to the chemical shifts for both the protein backbone and methyl-bearing amino-acid side chains. To...
nmrlearner
Journal club
0
09-15-2012 09:04 AM
[NMR paper] Conformational changes of colicin Ia channel-forming domain upon membrane binding: a
Conformational changes of colicin Ia channel-forming domain upon membrane binding: a solid-state NMR study.
Related Articles Conformational changes of colicin Ia channel-forming domain upon membrane binding: a solid-state NMR study.
Biochim Biophys Acta. 2002 Apr 12;1561(2):159-70
Authors: Huster D, Yao X, Jakes K, Hong M
Channel-forming colicins are bactericidal proteins that spontaneously insert into hydrophobic lipid bilayers. We have used magic-angle spinning solid-state nuclear magnetic resonance spectroscopy to examine the conformational...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
[NMR paper] NMR-based determination of the binding epitope and conformational analysis of MUC-1 g
NMR-based determination of the binding epitope and conformational analysis of MUC-1 glycopeptides and peptides bound to the breast cancer-selective monoclonal antibody SM3.
Related Articles NMR-based determination of the binding epitope and conformational analysis of MUC-1 glycopeptides and peptides bound to the breast cancer-selective monoclonal antibody SM3.
Eur J Biochem. 2002 Mar;269(5):1444-55
Authors: Möller H, Serttas N, Paulsen H, Burchell JM, Taylor-Papadimitriou J,
Mucin glycoproteins on breast cancer cells carry shortened...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
[NMR paper] NMR characterization of partially folded and unfolded conformational ensembles of pro
NMR characterization of partially folded and unfolded conformational ensembles of proteins.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_120x27.gif Related Articles NMR characterization of partially folded and unfolded conformational ensembles of proteins.
Biopolymers. 1999;51(3):191-207
Authors: Barbar E
Studies of unfolded and partially folded proteins provide important insight into the initiation and process of protein folding. This review focuses on the...
nmrlearner
Journal club
0
08-21-2010 04:03 PM
Structure-based protein NMR assignments using native structural ensembles
Structure-based protein NMR assignments using native structural ensembles
Mehmet Serkan Apaydın, Vincent Conitzer and Bruce Randall Donald
Journal of Biomolecular NMR; 2008; 40(4); pp 263-276
Abstract:
An important step in NMR protein structure determination is the assignment of resonances and NOEs to corresponding nuclei. Structure-based assignment (SBA) uses a model structure (“template”) for the target protein to expedite this process. Nuclear vector replacement (NVR) is an SBA framework that combines multiple sources of NMR data (chemical shifts, RDCs, sparse NOEs, amide exchange...