Related ArticlesNMR backbone assignment of a protein kinase catalytic domain by a combination of several approaches: application to the catalytic subunit of cAMP-dependent protein kinase.
Chembiochem. 2004 Nov 5;5(11):1508-16
Authors: Langer T, Vogtherr M, Elshorst B, Betz M, Schieborr U, Saxena K, Schwalbe H
Protein phosphorylation is one of the most important mechanisms used for intracellular regulation in eukaryotic cells. Currently, one of the best-characterized protein kinases is the catalytic subunit of cAMP-dependent protein kinase or protein kinase A (PKA). PKA has the typical bilobular structure of kinases, with the active site consisting of a cleft between the two structural lobes. For full kinase activity, the catalytic subunit has to be phosphorylated. The catalytic subunit of PKA has two main phosphorylation sites: Thr197 and Ser338. Binding of ATP or inhibitors to the ATP site induces large structural changes. Here we describe the partial backbone assignment of the PKA catalytic domain by NMR spectroscopy, which represents the first NMR assignment of any protein kinase catalytic domain. Backbone resonance assignment for the 42 kDa protein was accomplished by an approach employing 1) triply ((2)H,(13)C,(15)N) labeled protein and classical NMR assignment experiments, 2) back-calculation of chemical shifts from known X-ray structures, 3) use of paramagnetic adenosine derivatives as spin-labels, and 4) selective amino acid labeling. Interpretation of chemical-shift perturbations allowed mapping of the interaction surface with the protein kinase inhibitor H7. Furthermore, structural conformational changes were observed by comparison of backbone amide shifts obtained by 2D (1)H,(15)N TROSY of an inactive Thr197Ala mutant with the wild-type enzyme.
Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis
Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis
Abstract The phosphorylation-specific peptidyl-prolyl isomerase Pin1 catalyzes the isomerization of the peptide bond preceding a proline residue between cis and trans isomers. To best understand the mechanisms of Pin1 regulation, rigorous enzymatic assays of isomerization are required. However, most measures of isomerase activity require significant constraints on substrate sequence and only yield rate constants for the cis isomer,
kcatcis and apparent Michaelis constants,
...
nmrlearner
Journal club
0
09-30-2011 08:01 PM
Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis.
Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis.
Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis.
J Biomol NMR. 2011 Sep;51(1-2):21-34
Authors: Greenwood AI, Rogals MJ, De S, Lu KP, Kovrigin EL, Nicholson LK
Abstract
The phosphorylation-specific peptidyl-prolyl isomerase Pin1 catalyzes the isomerization of the peptide bond preceding a proline residue between cis and trans isomers. To best understand the mechanisms of Pin1 regulation,...
nmrlearner
Journal club
0
09-30-2011 06:00 AM
Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis.
Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis.
Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis.
J Biomol NMR. 2011 Sep;51(1-2):21-34
Authors: Greenwood AI, Rogals MJ, De S, Lu KP, Kovrigin EL, Nicholson LK
Abstract
The phosphorylation-specific peptidyl-prolyl isomerase Pin1 catalyzes the isomerization of the peptide bond preceding a proline residue between cis and trans isomers. To best understand the mechanisms of Pin1 regulation,...
nmrlearner
Journal club
0
09-30-2011 05:59 AM
[NMR paper] Reconsidering complete search algorithms for protein backbone NMR assignment.
Reconsidering complete search algorithms for protein backbone NMR assignment.
Related Articles Reconsidering complete search algorithms for protein backbone NMR assignment.
Bioinformatics. 2005 Sep 1;21 Suppl 2:ii230-6
Authors: Vitek O, Bailey-Kellogg C, Craig B, Kuliniewicz P, Vitek J
MOTIVATION: Nuclear magnetic resonance (NMR) spectroscopy is widely used to determine and analyze protein structures. An essential step in NMR studies is determining the backbone resonance assignment, which maps individual atoms to experimentally measured...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] NMR backbone assignment of the mitogen-activated protein (MAP) kinase p38.
NMR backbone assignment of the mitogen-activated protein (MAP) kinase p38.
Related Articles NMR backbone assignment of the mitogen-activated protein (MAP) kinase p38.
J Biomol NMR. 2005 Jun;32(2):175
Authors: Vogtherr M, Saxena K, Grimme S, Betz M, Schieborr U, Pescatore B, Langer T, Schwalbe H
nmrlearner
Journal club
0
11-25-2010 08:21 PM
[NMR paper] Three-dimensional modeling of the I-TevI homing endonuclease catalytic domain, a GIY-
Three-dimensional modeling of the I-TevI homing endonuclease catalytic domain, a GIY-YIG superfamily member, using NMR restraints and Monte Carlo dynamics.
Related Articles Three-dimensional modeling of the I-TevI homing endonuclease catalytic domain, a GIY-YIG superfamily member, using NMR restraints and Monte Carlo dynamics.
Protein Eng. 2001 Oct;14(10):717-21
Authors: Bujnicki JM, Rotkiewicz P, Kolinski A, Rychlewski L
Using a recent version of the SICHO algorithm for in silico protein folding, we made a blind prediction of the tertiary...
nmrlearner
Journal club
0
11-19-2010 08:44 PM
[NMR paper] NMR structure of a protein kinase C-gamma phorbol-binding domain and study of protein
NMR structure of a protein kinase C-gamma phorbol-binding domain and study of protein-lipid micelle interactions.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles NMR structure of a protein kinase C-gamma phorbol-binding domain and study of protein-lipid micelle interactions.
Biochemistry. 1997 Sep 2;36(35):10709-17
Authors: Xu RX, Pawelczyk T, Xia TH, Brown SC
Classical protein kinase C (PKC) family members are activated by the binding of various ligands to one of several cysteine-rich...
nmrlearner
Journal club
0
08-22-2010 05:08 PM
[NMR paper] Catalytic activity of the SH2 domain of human pp60c-src; evidence from NMR, mass spec
Catalytic activity of the SH2 domain of human pp60c-src; evidence from NMR, mass spectrometry, site-directed mutagenesis and kinetic studies for an inherent phosphatase activity.
Related Articles Catalytic activity of the SH2 domain of human pp60c-src; evidence from NMR, mass spectrometry, site-directed mutagenesis and kinetic studies for an inherent phosphatase activity.
Biochemistry. 1995 Nov 21;34(46):15351-8
Authors: Boerner RJ, Consler TG, Gampe RT, Weigl D, Willard DH, Davis DG, Edison AM, Loganzo F, Kassel DB, Xu RX
During solution...