BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-22-2010, 03:33 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,734
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR analysis reveals a positively charged hydrophobic domain as a common motif to bou

NMR analysis reveals a positively charged hydrophobic domain as a common motif to bound acetylcholine and d-tubocurarine.

Related Articles NMR analysis reveals a positively charged hydrophobic domain as a common motif to bound acetylcholine and d-tubocurarine.

Biochemistry. 1994 Jan 25;33(3):644-50

Authors: Fraenkel Y, Gershoni JM, Navon G

A complete 1H assignment of d-tubocurarine was carried out using 1D and 2D NMR techniques. Geometries of free acetylcholine (ACh) and d-tubocurarine were compared with those of the ligands bound to a recombinant cholinergic binding site (T alpha 184-200 expressed as a fusion protein in Escherichia coli). The conformations of the free ligands were determined by NOESY experiments while those of the bound molecules were obtained by transferred NOESY. The complete relaxation matrix was solved yielding distance constraints which were further refined by a sigma back-calculation. ACh bound to recombinant T alpha 184-200 closely resembled the conformation previously reported for ACh bound to the intact receptor. d-Tubocurarine in the bound state undergoes extensive induced conformational rearrangements generating a "cup"-shaped structure. A unique positively charged hydrophobic domain is identified as characteristic of both bound cholinergic ligands.

PMID: 8292592 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
NMR analysis reveals 17?-estradiol induced conformational change in ER? ligand binding domain expressed in E. coli.
NMR analysis reveals 17?-estradiol induced conformational change in ER? ligand binding domain expressed in E. coli. NMR analysis reveals 17?-estradiol induced conformational change in ER? ligand binding domain expressed in E. coli. Mol Biol Rep. 2010 Dec 12; Authors: Paramanik V, Thakur MK Nuclear magnetic resonance (NMR) spectroscopy is a useful biophysical technique to study the ligand-protein interaction. In this report, we have used bacterially produced ER? and its domains for studying the functional analysis of ligand-protein interaction....
nmrlearner Journal club 0 12-15-2010 12:03 PM
NMR Reveals a Different Mode of Binding of the Stam2 VHS Domain to Ubiquitin and Diubiquitin,
NMR Reveals a Different Mode of Binding of the Stam2 VHS Domain to Ubiquitin and Diubiquitin, http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi101594a/aop/images/medium/bi-2010-01594a_0006.gif Biochemistry DOI: 10.1021/bi101594a http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/HJPaBUvhJsw More...
nmrlearner Journal club 0 12-15-2010 12:16 AM
NMR reveals a different mode of binding of the Stam2 VHS domain to ubiquitin and diubiquitin.
NMR reveals a different mode of binding of the Stam2 VHS domain to ubiquitin and diubiquitin. Related Articles NMR reveals a different mode of binding of the Stam2 VHS domain to ubiquitin and diubiquitin. Biochemistry. 2010 Dec 1; Authors: Lange A, Hoeller D, Wienk H, Marcillat O, Lancelin JM, Walker O The VHS domain of the Stam2 protein is a ubiquitin binding domain involved in the recognition of ubiquitinated proteins committed to lysosomal degradation. Among all VHS domains, the VHS domain of Stam proteins is the strongest binder to...
nmrlearner Journal club 0 12-03-2010 08:52 PM
[NMR paper] NMR spectroscopy of proteins encapsulated in a positively charged surfactant.
NMR spectroscopy of proteins encapsulated in a positively charged surfactant. Related Articles NMR spectroscopy of proteins encapsulated in a positively charged surfactant. J Magn Reson. 2005 Jul;175(1):158-62 Authors: Lefebvre BG, Liu W, Peterson RW, Valentine KG, Wand AJ Traditionally, large proteins, aggregation-prone proteins, and membrane proteins have been difficult to examine by modern multinuclear and multidimensional solution NMR spectroscopy. A major limitation presented by these protein systems is that their slow molecular...
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] NMR structure of the hRap1 Myb motif reveals a canonical three-helix bundle lacking t
NMR structure of the hRap1 Myb motif reveals a canonical three-helix bundle lacking the positive surface charge typical of Myb DNA-binding domains. Related Articles NMR structure of the hRap1 Myb motif reveals a canonical three-helix bundle lacking the positive surface charge typical of Myb DNA-binding domains. J Mol Biol. 2001 Sep 7;312(1):167-75 Authors: Hanaoka S, Nagadoi A, Yoshimura S, Aimoto S, Li B, de Lange T, Nishimura Y Mammalian telomeres are composed of long tandem arrays of double-stranded telomeric TTAGGG repeats associated with...
nmrlearner Journal club 0 11-19-2010 08:44 PM
[NMR paper] NMR study on the binding of d(GGAAATTTCC)2 with a positively charged pentacosapeptide
NMR study on the binding of d(GGAAATTTCC)2 with a positively charged pentacosapeptide. Related Articles NMR study on the binding of d(GGAAATTTCC)2 with a positively charged pentacosapeptide. Biochim Biophys Acta. 1998 Nov 8;1442(2-3):137-47 Authors: van Lieshout E, Hemminga MA To obtain a better understanding of the electrostatic nature of protein-nucleic acid interactions, we have investigated the interaction of a double-stranded decamer d(GGAAATTTCC)2 with a synthetic arginine and lysine-rich pentacosapeptide (Pep25), using NMR and optical...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] NMR structure and dynamics of an RNA motif common to the spliceosome branch-point hel
NMR structure and dynamics of an RNA motif common to the spliceosome branch-point helix and the RNA-binding site for phage GA coat protein. Related Articles NMR structure and dynamics of an RNA motif common to the spliceosome branch-point helix and the RNA-binding site for phage GA coat protein. Biochemistry. 1998 Sep 29;37(39):13486-98 Authors: Smith JS, Nikonowicz EP The RNA molecules that make up the spliceosome branch-point helix and the binding site for phage GA coat protein share a secondary structure motif in which two consecutive...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] NMR analysis reveals a positively charged hydrophobic domain as a common motif to bou
NMR analysis reveals a positively charged hydrophobic domain as a common motif to bound acetylcholine and d-tubocurarine. Related Articles NMR analysis reveals a positively charged hydrophobic domain as a common motif to bound acetylcholine and d-tubocurarine. Biochemistry. 1994 Jan 25;33(3):644-50 Authors: Fraenkel Y, Gershoni JM, Navon G A complete 1H assignment of d-tubocurarine was carried out using 1D and 2D NMR techniques. Geometries of free acetylcholine (ACh) and d-tubocurarine were compared with those of the ligands bound to a...
nmrlearner Journal club 0 08-22-2010 03:33 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:48 PM.


Map