Abstract Ubiquitin is a post-translational modifier that is involved in cellular functions through its covalent attachment to target proteins. Ubiquitin can also be conjugated to itself at seven lysine residues and at its amino terminus to form eight linkage-specific polyubiquitin chains for individual cellular processes. The Lys63-linked polyubiquitin chain is recognized by tandem ubiquitin-interacting motifs (tUIMs) of Rap80 for the regulation of DNA repair. To understand the recognition mechanism between the Lys63-linked diubiquitin (K63-Ub2) and the tUIMs in solution, we determined the solution structure of the K63-Ub2:tUIMs complex by using NOE restraints and RDC data derived from NMR spectroscopy. The structure showed that the tUIMs adopts a nearly straight and single continuous Ī±-helix, and the two ubiquitin units of the K63-Ub2 separately bind to each UIM motif. The interfaces are formed between Ile44-centered patches of the two ubiquitin units and the hydrophobic residues of the tUIMs. We also showed that the linker region between the two UIM motifs possesses a random-coil conformation in the free state, but undergoes the coil-to-helix transition upon complex formation, which simultaneously fixes the relative position of ubiquitin subunits. These data suggest that the relative position of ubiquitin subunits in the K63-Ub2:tUIMs complex is essential for linkage-specific binding of Rap80 tUIMs.
Content Type Journal Article
Category Article
Pages 1-12
DOI 10.1007/s10858-012-9614-9
Authors
Naotaka Sekiyama, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan
JunGoo Jee, Center for Priority Areas, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397 Japan
Shin Isogai, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan
Ken-ichi Akagi, Section of Laboratory Equipments, National Institute of Biomedical Innovation, 7-6-8, Asagi, Saito, Ibaraki, Osaka, 567-0085 Japan
Tai-huang Huang, Division of Structural Biology, Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 11529 Taiwan
Mariko Ariyoshi, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan
Hidehito Tochio, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan
Masahiro Shirakawa, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan
A rigid disulfide-linked nitroxide side chain simplifies the quantitative analysis of PRE data
A rigid disulfide-linked nitroxide side chain simplifies the quantitative analysis of PRE data
Abstract The measurement of 1H transverse paramagnetic relaxation enhancement (PRE) has been used in biomolecular systems to determine long-range distance restraints and to visualize sparsely-populated transient states. The intrinsic flexibility of most nitroxide and metal-chelating paramagnetic spin-labels, however, complicates the quantitative interpretation of PREs due to delocalization of the paramagnetic center. Here, we present a novel, disulfide-linked nitroxide spin label, R1p, as...
nmrlearner
Journal club
0
09-30-2011 08:01 PM
Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy
Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy
Abstract Long-range structural information derived from paramagnetic relaxation enhancement observed in the presence of a paramagnetic nitroxide radical is highly useful for structural characterization of globular, modular and intrinsically disordered proteins, as well as proteinā??protein and protein-DNA complexes. Here we characterized the conformation of a spin-label attached to the homodimeric protein CylR2 using a combination of X-ray crystallography, electron...
nmrlearner
Journal club
0
01-31-2011 06:03 AM
Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy.
Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy.
Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy.
J Biomol NMR. 2011 Jan 28;
Authors: Gruene T, Cho MK, Karyagina I, Kim HY, Grosse C, Giller K, Zweckstetter M, Becker S
Long-range structural information derived from paramagnetic relaxation enhancement observed in the presence of a paramagnetic nitroxide radical is highly useful for structural characterization of...
nmrlearner
Journal club
0
01-29-2011 12:35 PM
[NMR paper] Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data.
Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data.
Related Articles Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data.
Proteins. 2005 Aug 15;60(3):367-81
Authors: van Dijk AD, Fushman D, Bonvin AM
When classical, Nuclear Overhauser Effect (NOE)-based approaches fail, it is possible, given high-resolution...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Ubiquitin binding interface mapping on yeast ubiquitin hydrolase by NMR chemical shif
Ubiquitin binding interface mapping on yeast ubiquitin hydrolase by NMR chemical shift perturbation.
Related Articles Ubiquitin binding interface mapping on yeast ubiquitin hydrolase by NMR chemical shift perturbation.
Biochemistry. 1999 Jul 20;38(29):9242-53
Authors: Rajesh S, Sakamoto T, Iwamoto-Sugai M, Shibata T, Kohno T, Ito Y
The interaction between the 26 kDa yeast ubiquitin hydrolase (YUH1), involved in maintaining the monomeric ubiquitin pool in cells, and the 8.5 kDa yeast ubiquitin protein has been studied by heteronuclear...
nmrlearner
Journal club
0
11-18-2010 08:31 PM
Quantitative Analysis of Protein Backbone Dynamics in Microcrystalline Ubiquitin by S
Quantitative Analysis of Protein Backbone Dynamics in Microcrystalline Ubiquitin by Solid-State NMR Spectroscopy.
Related Articles Quantitative Analysis of Protein Backbone Dynamics in Microcrystalline Ubiquitin by Solid-State NMR Spectroscopy.
J Am Chem Soc. 2010 Oct 26;
Authors: Schanda P, Meier BH, Ernst M
Characterization of protein dynamics by solid-state NMR spectroscopy requires robust and accurate measurement protocols, which are not yet fully developed. In this study, we investigate the backbone dynamics of microcrystalline ubiquitin...
nmrlearner
Journal club
0
10-29-2010 07:05 PM
Quantitative Analysis of Protein Backbone Dynamics in Microcrystalline Ubiquitin by S
Quantitative Analysis of Protein Backbone Dynamics in Microcrystalline Ubiquitin by Solid-State NMR Spectroscopy
Paul Schanda, Beat H. Meier and Matthias Ernst
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja100726a/aop/images/medium/ja-2010-00726a_0001.gif
Journal of the American Chemical Society
DOI: 10.1021/ja100726a
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/vMvBmzNs148
nmrlearner
Journal club
0
10-26-2010 08:48 PM
[NMR paper] An NMR analysis of the reaction of ubiquitin with [acetyl-1-13C]aspirin.
An NMR analysis of the reaction of ubiquitin with aspirin.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles An NMR analysis of the reaction of ubiquitin with aspirin.
Biochem Pharmacol. 1999 Jun 1;57(11):1233-44
Authors: Macdonald JM, LeBlanc DA, Haas AL, London RE
The acetylation of ubiquitin by aspirin has been studied using 2D NMR methods. Studies performed in a 50:50 H2O:D2O medium show doubling of the acetyl carbonyl resonances, indicating that all of the stable...