BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 02-25-2012, 12:16 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR analysis of Lys63-linked polyubiquitin recognition by the tandem ubiquitin-interacting motifs of Rap80

NMR analysis of Lys63-linked polyubiquitin recognition by the tandem ubiquitin-interacting motifs of Rap80


Abstract Ubiquitin is a post-translational modifier that is involved in cellular functions through its covalent attachment to target proteins. Ubiquitin can also be conjugated to itself at seven lysine residues and at its amino terminus to form eight linkage-specific polyubiquitin chains for individual cellular processes. The Lys63-linked polyubiquitin chain is recognized by tandem ubiquitin-interacting motifs (tUIMs) of Rap80 for the regulation of DNA repair. To understand the recognition mechanism between the Lys63-linked diubiquitin (K63-Ub2) and the tUIMs in solution, we determined the solution structure of the K63-Ub2:tUIMs complex by using NOE restraints and RDC data derived from NMR spectroscopy. The structure showed that the tUIMs adopts a nearly straight and single continuous Ī±-helix, and the two ubiquitin units of the K63-Ub2 separately bind to each UIM motif. The interfaces are formed between Ile44-centered patches of the two ubiquitin units and the hydrophobic residues of the tUIMs. We also showed that the linker region between the two UIM motifs possesses a random-coil conformation in the free state, but undergoes the coil-to-helix transition upon complex formation, which simultaneously fixes the relative position of ubiquitin subunits. These data suggest that the relative position of ubiquitin subunits in the K63-Ub2:tUIMs complex is essential for linkage-specific binding of Rap80 tUIMs.
  • Content Type Journal Article
  • Category Article
  • Pages 1-12
  • DOI 10.1007/s10858-012-9614-9
  • Authors
    • Naotaka Sekiyama, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan
    • JunGoo Jee, Center for Priority Areas, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397 Japan
    • Shin Isogai, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan
    • Ken-ichi Akagi, Section of Laboratory Equipments, National Institute of Biomedical Innovation, 7-6-8, Asagi, Saito, Ibaraki, Osaka, 567-0085 Japan
    • Tai-huang Huang, Division of Structural Biology, Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 11529 Taiwan
    • Mariko Ariyoshi, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan
    • Hidehito Tochio, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan
    • Masahiro Shirakawa, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8510 Japan

Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
A rigid disulfide-linked nitroxide side chain simplifies the quantitative analysis of PRE data
A rigid disulfide-linked nitroxide side chain simplifies the quantitative analysis of PRE data Abstract The measurement of 1H transverse paramagnetic relaxation enhancement (PRE) has been used in biomolecular systems to determine long-range distance restraints and to visualize sparsely-populated transient states. The intrinsic flexibility of most nitroxide and metal-chelating paramagnetic spin-labels, however, complicates the quantitative interpretation of PREs due to delocalization of the paramagnetic center. Here, we present a novel, disulfide-linked nitroxide spin label, R1p, as...
nmrlearner Journal club 0 09-30-2011 08:01 PM
Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy
Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy Abstract Long-range structural information derived from paramagnetic relaxation enhancement observed in the presence of a paramagnetic nitroxide radical is highly useful for structural characterization of globular, modular and intrinsically disordered proteins, as well as proteinā??protein and protein-DNA complexes. Here we characterized the conformation of a spin-label attached to the homodimeric protein CylR2 using a combination of X-ray crystallography, electron...
nmrlearner Journal club 0 01-31-2011 06:03 AM
Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy.
Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy. Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy. J Biomol NMR. 2011 Jan 28; Authors: Gruene T, Cho MK, Karyagina I, Kim HY, Grosse C, Giller K, Zweckstetter M, Becker S Long-range structural information derived from paramagnetic relaxation enhancement observed in the presence of a paramagnetic nitroxide radical is highly useful for structural characterization of...
nmrlearner Journal club 0 01-29-2011 12:35 PM
[NMR paper] Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data.
Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data. Related Articles Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data. Proteins. 2005 Aug 15;60(3):367-81 Authors: van Dijk AD, Fushman D, Bonvin AM When classical, Nuclear Overhauser Effect (NOE)-based approaches fail, it is possible, given high-resolution...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Ubiquitin binding interface mapping on yeast ubiquitin hydrolase by NMR chemical shif
Ubiquitin binding interface mapping on yeast ubiquitin hydrolase by NMR chemical shift perturbation. Related Articles Ubiquitin binding interface mapping on yeast ubiquitin hydrolase by NMR chemical shift perturbation. Biochemistry. 1999 Jul 20;38(29):9242-53 Authors: Rajesh S, Sakamoto T, Iwamoto-Sugai M, Shibata T, Kohno T, Ito Y The interaction between the 26 kDa yeast ubiquitin hydrolase (YUH1), involved in maintaining the monomeric ubiquitin pool in cells, and the 8.5 kDa yeast ubiquitin protein has been studied by heteronuclear...
nmrlearner Journal club 0 11-18-2010 08:31 PM
Quantitative Analysis of Protein Backbone Dynamics in Microcrystalline Ubiquitin by S
Quantitative Analysis of Protein Backbone Dynamics in Microcrystalline Ubiquitin by Solid-State NMR Spectroscopy. Related Articles Quantitative Analysis of Protein Backbone Dynamics in Microcrystalline Ubiquitin by Solid-State NMR Spectroscopy. J Am Chem Soc. 2010 Oct 26; Authors: Schanda P, Meier BH, Ernst M Characterization of protein dynamics by solid-state NMR spectroscopy requires robust and accurate measurement protocols, which are not yet fully developed. In this study, we investigate the backbone dynamics of microcrystalline ubiquitin...
nmrlearner Journal club 0 10-29-2010 07:05 PM
Quantitative Analysis of Protein Backbone Dynamics in Microcrystalline Ubiquitin by S
Quantitative Analysis of Protein Backbone Dynamics in Microcrystalline Ubiquitin by Solid-State NMR Spectroscopy Paul Schanda, Beat H. Meier and Matthias Ernst http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja100726a/aop/images/medium/ja-2010-00726a_0001.gif Journal of the American Chemical Society DOI: 10.1021/ja100726a http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/vMvBmzNs148
nmrlearner Journal club 0 10-26-2010 08:48 PM
[NMR paper] An NMR analysis of the reaction of ubiquitin with [acetyl-1-13C]aspirin.
An NMR analysis of the reaction of ubiquitin with aspirin. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles An NMR analysis of the reaction of ubiquitin with aspirin. Biochem Pharmacol. 1999 Jun 1;57(11):1233-44 Authors: Macdonald JM, LeBlanc DA, Haas AL, London RE The acetylation of ubiquitin by aspirin has been studied using 2D NMR methods. Studies performed in a 50:50 H2O:D2O medium show doubling of the acetyl carbonyl resonances, indicating that all of the stable...
nmrlearner Journal club 0 08-21-2010 04:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:42 AM.


Map