BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-24-2010, 09:51 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,734
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR of alpha-synuclein-polyamine complexes elucidates the mechanism and kinetics of i

NMR of alpha-synuclein-polyamine complexes elucidates the mechanism and kinetics of induced aggregation.

Related Articles NMR of alpha-synuclein-polyamine complexes elucidates the mechanism and kinetics of induced aggregation.

EMBO J. 2004 May 19;23(10):2039-46

Authors: Fernández CO, Hoyer W, Zweckstetter M, Jares-Erijman EA, Subramaniam V, Griesinger C, Jovin TM

The aggregation of alpha-synuclein is characteristic of Parkinson's disease (PD) and other neurodegenerative synucleinopathies. The 140-aa protein is natively unstructured; thus, ligands binding to the monomeric form are of therapeutic interest. Biogenic polyamines promote the aggregation of alpha-synuclein and may constitute endogenous agents modulating the pathogenesis of PD. We characterized the complexes of natural and synthetic polyamines with alpha-synuclein by NMR and assigned the binding site to C-terminal residues 109-140. Dissociation constants were derived from chemical shift perturbations. Greater polyamine charge (+2 --> +5) correlated with increased affinity and enhancement of fibrillation, for which we propose a simple kinetic mechanism involving a dimeric nucleation center. According to the analysis, polyamines increase the extent of nucleation by approximately 10(4) and the rate of monomer addition approximately 40-fold. Significant secondary structure is not induced in monomeric alpha-synuclein by polyamines at 15 degrees C. Instead, NMR reveals changes in a region (aa 22-93) far removed from the polyamine binding site and presumed to adopt the beta-sheet conformation characteristic of fibrillar alpha-synuclein. We conclude that the C-terminal domain acts as a regulator of alpha-synuclein aggregation.

PMID: 15103328 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
NMR-derived models of amidopyrine and its metabolites in complexes with rabbit cytochrome P450 2B4 reveal a structural mechanism of sequential N-dealkylation.
NMR-derived models of amidopyrine and its metabolites in complexes with rabbit cytochrome P450 2B4 reveal a structural mechanism of sequential N-dealkylation. NMR-derived models of amidopyrine and its metabolites in complexes with rabbit cytochrome P450 2B4 reveal a structural mechanism of sequential N-dealkylation. Biochemistry. 2011 Mar 29;50(12):2123-34 Authors: Roberts AG, Sjögren SE, Fomina N, Vu KT, Almutairi A, Halpert JR To understand the molecular basis of sequential N-dealkylation by cytochrome P450 2B enzymes, we studied the binding of...
nmrlearner Journal club 0 05-20-2011 11:26 AM
NMR-Derived Models of Amidopyrine and Its Metabolites in Complexes with Rabbit Cytochrome P450 2B4 Reveal a Structural Mechanism of Sequential N-Dealkylation
NMR-Derived Models of Amidopyrine and Its Metabolites in Complexes with Rabbit Cytochrome P450 2B4 Reveal a Structural Mechanism of Sequential N-Dealkylation http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi101797v/aop/images/medium/bi-2010-01797v_0012.gif Biochemistry DOI: 10.1021/bi101797v http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/lT6iIRntwis More...
nmrlearner Journal club 0 03-05-2011 02:44 AM
NMR analysis of the αIIbβ3 cytoplasmic interaction suggests a mechanism for integrin regulation [Biochemistry]
NMR analysis of the αIIbβ3 cytoplasmic interaction suggests a mechanism for integrin regulation Metcalf, D. G., Moore, D. T., Wu, Y., Kielec, J. M., Molnar, K., Valentine, K. G., Wand, A. J., Bennett, J. S., DeGrado, W. F.... Date: 2010-12-28 The integrin ?IIb?3 is a transmembrane (TM) heterodimeric adhesion receptor that exists in equilibrium between resting and active ligand binding conformations. In resting ?IIb?3, the TM and cytoplasmic domains of ?IIb and ?3 form a heterodimer that constrains ?IIb?3 in its resting conformation. To study the structure and dynamics of...
nmrlearner Journal club 0 01-03-2011 10:48 PM
NMR analysis of the {alpha}IIb{beta}3 cytoplasmic interaction suggests a mechanism for integrin regulation [Biochemistry]
NMR analysis of the {alpha}IIb{beta}3 cytoplasmic interaction suggests a mechanism for integrin regulation Metcalf, D. G., Moore, D. T., Wu, Y., Kielec, J. M., Molnar, K., Valentine, K. G., Wand, A. J., Bennett, J. S., DeGrado, W. F.... Date: 2010-12-28 The integrin IIbβ3 is a transmembrane (TM) heterodimeric adhesion receptor that exists in equilibrium between resting and active ligand binding conformations. In resting IIbβ3, the TM and cytoplasmic domains of IIb and β3 form a heterodimer that constrains IIbβ3 in its resting conformation. To study the structure...
nmrlearner Journal club 0 12-29-2010 06:01 AM
NMR analysis of the {alpha}IIb{beta}3 cytoplasmic interaction suggests a mechanism for integrin regulation.
NMR analysis of the {alpha}IIb{beta}3 cytoplasmic interaction suggests a mechanism for integrin regulation. NMR analysis of the {alpha}IIb{beta}3 cytoplasmic interaction suggests a mechanism for integrin regulation. Proc Natl Acad Sci U S A. 2010 Dec 14; Authors: Metcalf DG, Moore DT, Wu Y, Kielec JM, Molnar K, Valentine KG, Wand AJ, Bennett JS, Degrado WF The integrin ?IIb?3 is a transmembrane (TM) heterodimeric adhesion receptor that exists in equilibrium between resting and active ligand binding conformations. In resting ?IIb?3, the TM and...
nmrlearner Journal club 0 12-16-2010 09:21 PM
[NMR paper] NMR studies on Cu(II)-peptide complexes: exchange kinetics and determination of struc
NMR studies on Cu(II)-peptide complexes: exchange kinetics and determination of structures in solution. Related Articles NMR studies on Cu(II)-peptide complexes: exchange kinetics and determination of structures in solution. Mol Biosyst. 2005 May;1(1):79-84 Authors: Gaggelli E, Kozlowski H, Valensin D, Valensin G The interaction of copper(II) with histidine containing peptides has recently acquired renewed interest following the established link between abnormal protein behaviour in neurodegenerative processes and unpaired copper homeostasis....
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble
Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations. Related Articles Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations. J Am Chem Soc. 2005 Jan 19;127(2):476-7 Authors: Dedmon MM, Lindorff-Larsen K, Christodoulou J, Vendruscolo M, Dobson CM The intrinsically disordered protein alpha-synuclein plays a key role in the pathogenesis of Parkinson's disease (PD). We show here that the native state of alpha-synuclein...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] 19F and 31P NMR spectroscopy of G protein alpha subunits. Mechanism of activation by
19F and 31P NMR spectroscopy of G protein alpha subunits. Mechanism of activation by Al3+ and F-. Related Articles 19F and 31P NMR spectroscopy of G protein alpha subunits. Mechanism of activation by Al3+ and F-. J Biol Chem. 1991 Feb 25;266(6):3396-401 Authors: Higashijima T, Graziano MP, Suga H, Kainosho M, Gilman AG 19F and 31P NMR spectroscopy was used to study the mechanism of activation of the alpha subunits of guanine nucleotide-binding regulatory proteins (G proteins) by Al3+, Mg2+, and F-. 19F NMR spectra of solutions containing Al3+,...
nmrlearner Journal club 0 08-21-2010 11:16 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:42 PM.


Map