BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 01-19-2018, 08:57 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,734
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default A new class of CEST experiment based on selecting different magnetization components at the start and end of the CEST relaxation element: an application to 1 H CEST

A new class of CEST experiment based on selecting different magnetization components at the start and end of the CEST relaxation element: an application to 1 H CEST

Abstract

Chemical exchange saturation transfer (CEST) experiments are becoming increasingly popular for investigating biomolecular exchange dynamics with rates on the order of approximately 50ā??500Ā*sā??1 and a rich toolkit of different methods has emerged over the past few years. Typically, experiments are based on the evolution of longitudinal magnetization, or in some cases two-spin order, during a fixed CEST relaxation delay, with the same class of magnetization prepared at the start and selected at end of the CEST period. Here we present a pair of TROSY-based pulse schemes for recording amide and methyl 1H CEST profiles where longitudinal magnetization at the start evolves to produce two-spin order that is then selected at the completion of the CEST element. This selection process subtracts out contributions from 1Hā??1H cross-relaxation on the fly that would otherwise complicate analysis of the data. It also obviates the need to record spin-state selective CEST profiles as an alternative to eliminating NOE effects, leading to significant improvements in sensitivity. The utility of the approach is demonstrated on a sample of a cavity mutant of T4 lysozyme that undergoes chemical exchange between conformations where the cavity is free and occupied.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Longitudinal relaxation optimized amide 1 H-CEST experiments for studying slow chemical exchange processes in fully protonated proteins
Longitudinal relaxation optimized amide 1 H-CEST experiments for studying slow chemical exchange processes in fully protonated proteins Abstract Chemical Exchange Saturation Transfer (CEST) experiments are increasingly used to study slow timescale exchange processes in biomolecules. Although 15N- and 13C-CEST have been the approaches of choice, the development of spin state selective 1H-CEST pulse sequences that separate the effects of chemical and dipolar exchange significantly increases the utility of 1H-based experiments. Pulse schemes have been...
nmrlearner Journal club 0 03-30-2017 06:42 PM
[NMR paper] Evaluating the influence of initial magnetization conditions on extracted exchange parameters in NMR relaxation experiments: applications to CPMG and CEST.
Evaluating the influence of initial magnetization conditions on extracted exchange parameters in NMR relaxation experiments: applications to CPMG and CEST. Evaluating the influence of initial magnetization conditions on extracted exchange parameters in NMR relaxation experiments: applications to CPMG and CEST. J Biomol NMR. 2016 Jul 29; Authors: Yuwen T, Sekhar A, Kay LE Abstract
nmrlearner Journal club 0 07-31-2016 09:37 PM
Evaluating the influence of initial magnetization conditions on extracted exchange parameters in NMR relaxation experiments: applications to CPMG and CEST
Evaluating the influence of initial magnetization conditions on extracted exchange parameters in NMR relaxation experiments: applications to CPMG and CEST Abstract Transient excursions of native protein states to functionally relevant higher energy conformations often occur on the Ī¼sā??ms timescale. NMR spectroscopy has emerged as an important tool to probe such processes using techniques such as Carrā??Purcellā??Meiboomā??Gill (CPMG) relaxation dispersion and Chemical Exchange Saturation Transfer (CEST). The extraction of kinetic and...
nmrlearner Journal club 0 07-30-2016 04:57 AM
[NMR paper] Transfer Rate Edited Experiment for the Selective Detection of Chemical Exchange via Saturaion Transfer (TRE-CEST)
Transfer Rate Edited Experiment for the Selective Detection of Chemical Exchange via Saturaion Transfer (TRE-CEST) Publication date: Available online 7 May 2015 Source:Journal of Magnetic Resonance</br> Author(s): Joshua I. Friedman , Ding Xia , Ravinder R. Regatte , Alexej Jerschow</br> Chemical Exchange Saturation Transfer (CEST) magnetic resonance experiments have become valuable tools in magnetic resonance for the detection of low concentration solutes with far greater sensitivity than direct detection methods. Accurate measures of rates of chemical exchange...
nmrlearner Journal club 0 05-10-2015 07:49 PM
Erratum to: 13 C Ī± CEST experiment on uniformly 13 C-labeled proteins
Erratum to: 13 C Ī± CEST experiment on uniformly 13 C-labeled proteins Source: Journal of Biomolecular NMR
nmrlearner Journal club 0 02-11-2015 04:19 PM
13 C Ī± CEST experiment on uniformly 13 C-labeled proteins
13 C Ī± CEST experiment on uniformly 13 C-labeled proteins Abstract A new HSQC-based 13CĪ± CEST pulse scheme is proposed, which is suitable for uniformly 13C- or 13C, 15N-labeled samples in either water or heavy water. Except for Thr and Ser residues, the sensitivity of this scheme for uniformly labeled samples is similar to that of the previous scheme for selectively 13CĪ±-labeled samples with 100Ā*% isotope enrichment. The experiment is demonstrated on an acyl carrier protein domain. Our 13CĪ± CEST data reveal that the minor state of the acyl...
nmrlearner Journal club 0 12-03-2014 04:05 PM
Triple resonance-based 13 C Ī± and 13 C Ī² CEST experiments for studies of ms timescale dynamics in proteins
Triple resonance-based 13 C Ī± and 13 C Ī² CEST experiments for studies of ms timescale dynamics in proteins Abstract A pair of triple resonance based CEST pulse schemes are presented for measuring 13CĪ± and 13CĪ² chemical shifts of sparsely populated and transiently formed conformers that are invisible to traditional NMR experiments. CEST profiles containing dips at resonance positions of 13CĪ± or 13CĪ² spins of major (ground) and minor (excited) conformers are obtained in a pseudo 3rd dimension that is generated by quantifying modulations of cross...
nmrlearner Journal club 0 10-28-2014 02:42 PM
A 2D 13C-CEST experiment for studying slowly exchanging protein systems using methyl probes: an application to protein folding
A 2D 13C-CEST experiment for studying slowly exchanging protein systems using methyl probes: an application to protein folding Abstract A 2D 13C Chemical Exchange Saturation Transfer (CEST) experiment is presented for studying slowly exchanging protein systems using methyl groups as probes. The utility of the method is first established through studies of protein L, a small protein, for which chemical exchange on the millisecond time-scale is not observed. Subsequently the approach is applied to a folding exchange reaction of a G48M mutant Fyn SH3 domain, for which only cross-peaks...
nmrlearner Journal club 0 06-16-2012 06:01 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:04 PM.


Map