Related ArticlesNew approaches to the dynamic interpretation and prediction of NMR relaxation data from proteins.
Curr Opin Struct Biol. 2003 Apr;13(2):175-83
Authors: Brüschweiler R
NMR relaxation experiments of isotopically labeled proteins provide a wealth of information on reorientational global and local dynamics on nanosecond and subnanosecond timescales for folded and nonfolded proteins in solution. Recent methodological advances in the interpretation of relaxation data have led to a better understanding of the overall tumbling behavior, the separability of internal and overall motions, and the presence of correlated dynamics between different nuclear sites, as well as to new insights into the relationship between reorientational dynamics and primary and tertiary protein structure. Some of the new methods are particularly useful when dealing with nonfolded protein states.
[NMR paper] Thermodynamic interpretation of protein dynamics from NMR relaxation measurements.
Thermodynamic interpretation of protein dynamics from NMR relaxation measurements.
Related Articles Thermodynamic interpretation of protein dynamics from NMR relaxation measurements.
Protein Pept Lett. 2005 Apr;12(3):235-40
Authors: Spyracopoulos L
Protein dynamics and thermodynamics can be characterized through measurements of relaxation rates of side chain (2)H and (13)C, and backbone (15)N nuclei using NMR spectroscopy. The rates reflect protein motions on timescales from picoseconds to milliseconds. Backbone and methyl side chain NMR...
nmrlearner
Journal club
0
11-25-2010 08:21 PM
[NMR paper] Interpretation of NMR relaxation properties of Pin1, a two-domain protein, based on B
Interpretation of NMR relaxation properties of Pin1, a two-domain protein, based on Brownian dynamic simulations.
Related Articles Interpretation of NMR relaxation properties of Pin1, a two-domain protein, based on Brownian dynamic simulations.
J Biomol NMR. 2004 May;29(1):21-35
Authors: Bernadó P, Fernandes MX, Jacobs DM, Fiebig K, García de la Torre J, Pons M
Many important proteins contain multiple domains connected by flexible linkers. Inter-domain motion is suggested to play a key role in many processes involving molecular recognition....
nmrlearner
Journal club
0
11-24-2010 09:51 PM
[NMR paper] TOUCHSTONEX: protein structure prediction with sparse NMR data.
TOUCHSTONEX: protein structure prediction with sparse NMR data.
Related Articles TOUCHSTONEX: protein structure prediction with sparse NMR data.
Proteins. 2003 Nov 1;53(2):290-306
Authors: Li W, Zhang Y, Kihara D, Huang YJ, Zheng D, Montelione GT, Kolinski A, Skolnick J
TOUCHSTONEX, a new method for folding proteins that uses a small number of long-range contact restraints derived from NMR experimental NOE (nuclear Overhauser enhancement) data, is described. The method employs a new lattice-based, reduced model of proteins that explicitly...
nmrlearner
Journal club
0
11-24-2010 09:16 PM
[NMR paper] (13)C-(1)H NMR relaxation and fluorescence anisotropy decay study of tyrosine dynamic
(13)C-(1)H NMR relaxation and fluorescence anisotropy decay study of tyrosine dynamics in motilin.
Related Articles (13)C-(1)H NMR relaxation and fluorescence anisotropy decay study of tyrosine dynamics in motilin.
Biophys J. 2002 Nov;83(5):2812-25
Authors: Damberg P, Jarvet J, Allard P, Mets U, Rigler R, Gräslund A
Tyrosine ring dynamics of the gastrointestinal hormone motilin was studied using two independent physical methods: fluorescence polarization anisotropy decay and NMR relaxation. Motilin, a 22-residue peptide, was selectively (13)C...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
[NMR paper] Interpretation of 15N NMR relaxation data of globular proteins using hydrodynamic cal
Interpretation of 15N NMR relaxation data of globular proteins using hydrodynamic calculations with HYDRONMR.
Related Articles Interpretation of 15N NMR relaxation data of globular proteins using hydrodynamic calculations with HYDRONMR.
J Biomol NMR. 2002 Jun;23(2):139-50
Authors: Bernadó P, García de la Torre J, Pons M
HYDRONMR is an implementation of state of the art hydrodynamic modeling to calculate the spectral density functions for NH or C(alpha)-H vectors in a rigid protein structure starting from an atomic level representation. Thus...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
[NMR paper] HYDRONMR: prediction of NMR relaxation of globular proteins from atomic-level structu
HYDRONMR: prediction of NMR relaxation of globular proteins from atomic-level structures and hydrodynamic calculations.
Related Articles HYDRONMR: prediction of NMR relaxation of globular proteins from atomic-level structures and hydrodynamic calculations.
J Magn Reson. 2000 Nov;147(1):138-46
Authors: García de la Torre J, Huertas ML, Carrasco B
The heteronuclear NMR relaxation of globular proteins depends on the anisotropic rotational diffusion tensor. Using our previous developments for prediction of hydrodynamic properties of arbitrarily...
nmrlearner
Journal club
0
11-19-2010 08:29 PM
Protein secondary structure prediction using NMR chemical shift data.
Protein secondary structure prediction using NMR chemical shift data.
Related Articles Protein secondary structure prediction using NMR chemical shift data.
J Bioinform Comput Biol. 2010 Oct;8(5):867-84
Authors: Zhao Y, Alipanahi B, Li SC, Li M
Accurate determination of protein secondary structure from the chemical shift information is a key step for NMR tertiary structure determination. Relatively few work has been done on this subject. There needs to be a systematic investigation of algorithms that are (a) robust for large datasets; (b)...
nmrlearner
Journal club
0
10-29-2010 07:05 PM
[NMR paper] Dynamic structure of proteins in solid state. 1H and 13C NMR relaxation study.
Dynamic structure of proteins in solid state. 1H and 13C NMR relaxation study.
Related Articles Dynamic structure of proteins in solid state. 1H and 13C NMR relaxation study.
J Biomol Struct Dyn. 1996 Oct;14(2):211-24
Authors: Krushelnitsky AG, Fedotov VD, Spevacek J, Straka J
Temperature dependencies of 1H non-selective NMR T1 and T2 relaxation times measured at two resonance frequencies and natural abundance 13C NMR relaxation times T1 and T1r measured at room temperature have been studied in a set of dry and wet solid proteins - Bacterial...