BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 06-19-2018, 08:46 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default New applications of solid-state NMR in structural biology.

New applications of solid-state NMR in structural biology.

Related Articles New applications of solid-state NMR in structural biology.

Emerg Top Life Sci. 2018 Apr 20;2(1):57-67

Authors: van der Wel PCA

Abstract
Various recent developments in solid-state nuclear magnetic resonance (ssNMR) spectroscopy have enabled an array of new insights regarding the structure, dynamics, and interactions of biomolecules. In the ever more integrated world of structural biology, ssNMR studies provide structural and dynamic information that is complementary to the data accessible by other means. ssNMR enables the study of samples lacking a crystalline lattice, featuring static as well as dynamic disorder, and does so independent of higher-order symmetry. The present study surveys recent applications of biomolecular ssNMR and examines how this technique is increasingly integrated with other structural biology techniques, such as (cryo) electron microscopy, solution-state NMR, and X-ray crystallography. Traditional ssNMR targets include lipid bilayer membranes and membrane proteins in a lipid bilayer environment. Another classic application has been in the area of protein misfolding and aggregation disorders, where ssNMR has provided essential structural data on oligomers and amyloid fibril aggregates. More recently, the application of ssNMR has expanded to a growing array of biological assemblies, ranging from non-amyloid protein aggregates, protein-protein complexes, viral capsids, and many others. Across these areas, multidimensional magic angle spinning (MAS) ssNMR has, in the last decade, revealed three-dimensional structures, including many that had been inaccessible by other structural biology techniques. Equally important insights in structural and molecular biology derive from the ability of MAS ssNMR to probe information beyond comprehensive protein structures, such as dynamics, solvent exposure, protein-protein interfaces, and substrate-enzyme interactions.


PMID: 29911185 [PubMed]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Unique Insights into the Structural and Functional Biology of Membrane Proteins from Solid State NMR Spectroscopy
Unique Insights into the Structural and Functional Biology of Membrane Proteins from Solid State NMR Spectroscopy Publication date: 2 February 2018 Source:Biophysical Journal, Volume 114, Issue 3, Supplement 1</br> Author(s): Timothy Cross, Joana Paulino, Huajun Qin, Yiseul Shin, Cristian Escobar, Rongfu Zhang, Joshua Taylor, Yimin Miao, Riqiang Fu, Eduard Chekmenev, Ivan Hung, Zhehong Gan, Petr Gor'kov</br> </br></br> </br></br> More...
nmrlearner Journal club 0 02-07-2018 03:41 PM
[NMR paper] Beyond Structural Biology to Functional Biology: Solid-State NMR Experiments and Strategies for Understanding the M2 Proton Channel Conductance.
Beyond Structural Biology to Functional Biology: Solid-State NMR Experiments and Strategies for Understanding the M2 Proton Channel Conductance. Related Articles Beyond Structural Biology to Functional Biology: Solid-State NMR Experiments and Strategies for Understanding the M2 Proton Channel Conductance. J Phys Chem B. 2017 Apr 20;: Authors: Qin H, Miao Y, Cross TA, Fu R Abstract In terms of structural biology, solid-state NMR experiments and strategies have been well established for resonance assignments leading to the...
nmrlearner Journal club 0 04-21-2017 03:35 PM
Structural biology applications of solid state MAS DNP NMR #DNPNMR
From The DNP-NMR Blog: Structural biology applications of solid state MAS DNP NMR #DNPNMR Akbey, U. and H. Oschkinat, Structural biology applications of solid state MAS DNP NMR. J Magn Reson, 2016. 269: p. 213-24. http://www.ncbi.nlm.nih.gov/pubmed/27095695
nmrlearner News from NMR blogs 0 08-31-2016 02:34 PM
[NMR paper] Solid-state NMR: An emerging technique in structural biology of self-assemblies.
Solid-state NMR: An emerging technique in structural biology of self-assemblies. Related Articles Solid-state NMR: An emerging technique in structural biology of self-assemblies. Biophys Chem. 2015 Jul 16; Authors: Habenstein B, Loquet A Abstract Protein self-assemblies are ubiquitous biological systems involved in many cellular processes, ranging from bacterial and viral infection to the propagation of neurodegenerative disorders. Studying the atomic three-dimensional structures of protein self-assemblies is a particularly...
nmrlearner Journal club 0 08-04-2015 03:00 PM
Solid-state NMR enhanced by dynamic nuclear polarization as a novel tool for ribosome structural biology
From The DNP-NMR Blog: Solid-state NMR enhanced by dynamic nuclear polarization as a novel tool for ribosome structural biology Gelis, I., et al., Solid-state NMR enhanced by dynamic nuclear polarization as a novel tool for ribosome structural biology. J. Biomol. NMR, 2013. 56(2): p. 85-93. http://dx.doi.org/10.1007/s10858-013-9721-2
nmrlearner News from NMR blogs 0 09-09-2013 05:14 PM
Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method [Biophysics and Computational Biology]
Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method Verardi, R., Shi, L., Traaseth, N. J., Walsh, N., Veglia, G.... Date: 2011-05-31 Phospholamban (PLN) is a type II membrane protein that inhibits the sarcoplasmic reticulum Ca2+-ATPase (SERCA), thereby regulating calcium homeostasis in cardiac muscle. In membranes, PLN forms pentamers that have been proposed to function either as a storage for active monomers or as ion channels. Here, we report the T-state structure of pentameric PLN solved by a hybrid solution and...
nmrlearner Journal club 0 05-31-2011 11:41 PM
[NMR paper] Biomolecular solid state NMR: advances in structural methodology and applications to
Biomolecular solid state NMR: advances in structural methodology and applications to peptide and protein fibrils. Related Articles Biomolecular solid state NMR: advances in structural methodology and applications to peptide and protein fibrils. Annu Rev Phys Chem. 2001;52:575-606 Authors: Tycko R Solid state nuclear magnetic resonance (NMR) methods can provide atomic-level structural constraints on peptides and proteins in forms that are not amenable to characterization by other high-resolution structural techniques, owing to insolubility,...
nmrlearner Journal club 0 11-19-2010 08:32 PM
Structural Biology- Practical NMR Applications-Quincy Teng
Structural Biology-Practical NMR Applications-Quincy Teng I have just seen this book and have had time to skim it, seems like an excellent book to base an upper level undergrad or a grad course on, much easier to read than Cavanaugh and includes questions as well as learning goals for each section. Has anyone else had a chance to go through this book?
mrevingt Books 1 03-24-2006 04:44 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:17 AM.


Map