BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-22-2010, 03:31 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Negative entropy of halothane binding to protein: 19F-NMR with a novel cell.

Negative entropy of halothane binding to protein: 19F-NMR with a novel cell.

Related Articles Negative entropy of halothane binding to protein: 19F-NMR with a novel cell.

Biochim Biophys Acta. 1997 Mar 15;1334(2-3):117-22

Authors: Yoshida T, Tanaka M, Mori Y, Ueda I

An obvious difficulty of the study of binding of volatile anesthetics to proteins is to prevent loss of the ligand during the procedure. A novel NMR tube was designed that consists of concentric double cylinders which slide each other under sealed condition. A gas space is left in the tube to measure the free anesthetic concentration in the gas phase, which is in equilibrium with the solution. The enthalpy change of anesthetic transfer from water to BSA, deltaH(w-->r) was -40 kJ x mol(-1). The Gibbs free energy deltaG(w-->r) was -14.0 kJ x mol(-1) at 283 K (K(D) = 2.6 mM) and increased to -11.6 kJ x mol(-1) at 310 K (K(D) = 10.9 mM). The maximum binding site (Bmax) was 19.3 at 10 degrees C and increased to 34.5 at 37 degrees C. The entropy change, deltaS(w-->r) was -92 J x mol(-1) x K(-1) and was almost constant in the temperature range 10 approximately 37 degrees C. Contrary to the general consensus that hydrophobic interaction is entropy-driven, the binding of halothane to BSA was enthalpy-driven, compensating the opposing effect of deltaS with negative deltaH at the biologically meaningful temperature range. Possible cause of the negative deltaS relating to the conformational change of BSA is discussed.

PMID: 9101704 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Probing the binding entropy of ligand-protein interactions by NMR.
Probing the binding entropy of ligand-protein interactions by NMR. Related Articles Probing the binding entropy of ligand-protein interactions by NMR. Chembiochem. 2005 Sep;6(9):1585-91 Authors: Homans SW
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Role of entropy in protein thermostability: folding kinetics of a hyperthermophilic c
Role of entropy in protein thermostability: folding kinetics of a hyperthermophilic cold shock protein at high temperatures using 19F NMR. Related Articles Role of entropy in protein thermostability: folding kinetics of a hyperthermophilic cold shock protein at high temperatures using 19F NMR. Biochemistry. 2002 Oct 1;41(39):11670-80 Authors: Schuler B, Kremer W, Kalbitzer HR, Jaenicke R We used (19)F NMR to extend the temperature range accessible to detailed kinetic and equilibrium studies of a hyperthermophilic protein. Employing an...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] NMR relaxation studies of the role of conformational entropy in protein stability and
NMR relaxation studies of the role of conformational entropy in protein stability and ligand binding. Related Articles NMR relaxation studies of the role of conformational entropy in protein stability and ligand binding. Acc Chem Res. 2001 May;34(5):379-88 Authors: Stone MJ Recent advances in the measurement and analysis of protein NMR relaxation data have made it possible to characterize the dynamical properties of many backbone and side chain groups. With certain caveats, changes in flexibility that occur upon ligand binding, mutation, or...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] An increase in side chain entropy facilitates effector binding: NMR characterization
An increase in side chain entropy facilitates effector binding: NMR characterization of the side chain methyl group dynamics in Cdc42Hs. Related Articles An increase in side chain entropy facilitates effector binding: NMR characterization of the side chain methyl group dynamics in Cdc42Hs. Biochemistry. 2001 Apr 17;40(15):4590-600 Authors: Loh AP, Pawley N, Nicholson LK, Oswald RE Cdc42Hs is a signal transduction protein that is involved in cytoskeletal growth and organization. We describe here the methyl side chain dynamics of three forms of...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] Comparison of protein backbone entropy and beta-sheet stability: NMR-derived dynamics
Comparison of protein backbone entropy and beta-sheet stability: NMR-derived dynamics of protein G B1 domain mutants. Related Articles Comparison of protein backbone entropy and beta-sheet stability: NMR-derived dynamics of protein G B1 domain mutants. J Am Chem Soc. 2001 Jan 10;123(1):185-6 Authors: Stone MJ, Gupta S, Snyder N, Regan L
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] Contributions to protein entropy and heat capacity from bond vector motions measured
Contributions to protein entropy and heat capacity from bond vector motions measured by NMR spin relaxation. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Contributions to protein entropy and heat capacity from bond vector motions measured by NMR spin relaxation. J Mol Biol. 1997 Oct 10;272(5):790-804 Authors: Yang D, Mok YK, Forman-Kay JD, Farrow NA, Kay LE The backbone dynamics of both folded and unfolded states of staphylococcal nuclease (SNase) and the N-terminal...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] Negative entropy of halothane binding to protein: 19F-NMR with a novel cell.
Negative entropy of halothane binding to protein: 19F-NMR with a novel cell. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Negative entropy of halothane binding to protein: 19F-NMR with a novel cell. Biochim Biophys Acta. 1997 Mar 15;1334(2-3):117-22 Authors: Yoshida T, Tanaka M, Mori Y, Ueda I An obvious difficulty of the study of binding of volatile anesthetics to proteins is to prevent loss of the ligand during the procedure. A novel NMR tube was designed that...
nmrlearner Journal club 0 08-22-2010 03:03 PM
[NMR paper] The negative-acting NMR regulatory protein of Neurospora crassa binds to and inhibits
The negative-acting NMR regulatory protein of Neurospora crassa binds to and inhibits the DNA-binding activity of the positive-acting nitrogen regulatory protein NIT2. Related Articles The negative-acting NMR regulatory protein of Neurospora crassa binds to and inhibits the DNA-binding activity of the positive-acting nitrogen regulatory protein NIT2. Biochemistry. 1995 Jul 11;34(27):8861-8 Authors: Xiao X, Fu YH, Marzluf GA Structural genes of the nitrogen regulatory circuit of the filamentous fungus Neurospora crassa are under the control of...
nmrlearner Journal club 0 08-22-2010 03:50 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:49 AM.


Map