BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-09-2021, 10:05 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Nascent chain dynamics and ribosome interactions within folded ribosome-nascent chain complexes observed by NMR spectroscopy

Nascent chain dynamics and ribosome interactions within folded ribosome-nascent chain complexes observed by NMR spectroscopy

The folding of many proteins can begin during biosynthesis on the ribosome and can be modulated by the ribosome itself. Such perturbations are generally believed to be mediated through interactions between the nascent chain and the ribosome surface, but despite recent progress in characterising interactions of unfolded states with the ribosome, and their impact on the initiation of co-translational folding, a complete quantitative analysis of interactions across both folded and unfolded states...

More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[ASAP] Capturing Membrane Protein Ribosome Nascent Chain Complexes in a Native-like Environment for Co-translational Studies
Capturing Membrane Protein Ribosome Nascent Chain Complexes in a Native-like Environment for Co-translational Studies https://pubs.acs.org/na101/home/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.0c00423/20200724/images/medium/bi0c00423_0006.gif Biochemistry DOI: 10.1021/acs.biochem.0c00423 http://feeds.feedburner.com/~r/acs/bichaw/~4/WFH3x3vJplk More...
nmrlearner Journal club 0 07-26-2020 05:23 PM
[ASAP] Lysine Side-Chain Dynamics in the Binding Site of Homeodomain/DNA Complexes As Observed by NMR Relaxation Experiments and Molecular Dynamics Simulations
Lysine Side-Chain Dynamics in the Binding Site of Homeodomain/DNA Complexes As Observed by NMR Relaxation Experiments and Molecular Dynamics Simulations https://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.8b00195/20180430/images/medium/bi-2018-001959_0008.gif Biochemistry DOI: 10.1021/acs.biochem.8b00195 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/609FbT_MCUM More...
nmrlearner Journal club 0 05-01-2018 10:57 PM
[NMR paper] Lysine Side-Chain Dynamics in the Binding Site of Homeodomain/DNA Complexes as Observed by NMR Relaxation Experiments and Molecular Dynamics Simulations.
Lysine Side-Chain Dynamics in the Binding Site of Homeodomain/DNA Complexes as Observed by NMR Relaxation Experiments and Molecular Dynamics Simulations. Related Articles Lysine Side-Chain Dynamics in the Binding Site of Homeodomain/DNA Complexes as Observed by NMR Relaxation Experiments and Molecular Dynamics Simulations. Biochemistry. 2018 Apr 17;: Authors: Baird-Titus JM, Thapa M, Doerdelmann T, Combs KA, Rance M Abstract An important but poorly characterized contribution to the thermodynamics of protein-DNA interactions is...
nmrlearner Journal club 0 04-18-2018 01:41 PM
[NMR paper] A strategy for co-translational folding studies of ribosome-bound nascent chain complexes using NMR spectroscopy.
A strategy for co-translational folding studies of ribosome-bound nascent chain complexes using NMR spectroscopy. Related Articles A strategy for co-translational folding studies of ribosome-bound nascent chain complexes using NMR spectroscopy. Nat Protoc. 2016 Aug;11(8):1492-1507 Authors: Cassaignau AM, Launay HM, Karyadi ME, Wang X, Waudby CA, Deckert A, Robertson AL, Christodoulou J, Cabrita LD Abstract During biosynthesis on the ribosome, an elongating nascent polypeptide chain can begin to fold, in a process that is central...
nmrlearner Journal club 0 07-29-2016 03:01 PM
[NMR paper] Increasing the sensitivity of NMR diffusion measurements by paramagnetic longitudinal relaxation enhancement, with application to ribosome-nascent chain complexes.
Increasing the sensitivity of NMR diffusion measurements by paramagnetic longitudinal relaxation enhancement, with application to ribosome-nascent chain complexes. Related Articles Increasing the sensitivity of NMR diffusion measurements by paramagnetic longitudinal relaxation enhancement, with application to ribosome-nascent chain complexes. J Biomol NMR. 2015 Aug 8; Authors: Chan SH, Waudby CA, Cassaignau AM, Cabrita LD, Christodoulou J Abstract The translational diffusion of macromolecules can be examined non-invasively by...
nmrlearner Journal club 0 08-09-2015 05:01 PM
Increasing the sensitivity of NMR diffusion measurements by paramagnetic longitudinal relaxation enhancement, with application to ribosomeâ??nascent chain complexes
Increasing the sensitivity of NMR diffusion measurements by paramagnetic longitudinal relaxation enhancement, with application to ribosomeâ??nascent chain complexes Abstract The translational diffusion of macromolecules can be examined non-invasively by stimulated echo (STE) NMR experiments to accurately determine their molecular sizes. These measurements can be important probes of intermolecular interactions and protein folding and unfolding, and are crucial in monitoring the integrity of large macromolecular assemblies...
nmrlearner Journal club 0 08-08-2015 12:17 PM
[NMR paper] Backbone and side chain NMR assignments for the ribosome assembly factor Nop6 from Saccharomyces cerevisiae.
Backbone and side chain NMR assignments for the ribosome assembly factor Nop6 from Saccharomyces cerevisiae. Backbone and side chain NMR assignments for the ribosome assembly factor Nop6 from Saccharomyces cerevisiae. Biomol NMR Assign. 2013 Aug 7; Authors: Wurm JP, Lioutikov A, Kötter P, Entian KD, Wöhnert J Abstract The Saccharomyces cerevisiae Nop6 protein is involved in the maturation of the small ribosomal subunit. It contains a central RNA binding domain and a predicted C-terminal coiled-coil domain. Here we report the almost...
nmrlearner Journal club 0 08-08-2013 03:46 PM
Co-Translational Protein Folding on the Ribosome: using NMR Spectroscopy to Provide Structure and Dynamics of Ribosome-Nascent Chains
Co-Translational Protein Folding on the Ribosome: using NMR Spectroscopy to Provide Structure and Dynamics of Ribosome-Nascent Chains 29 January 2013 Publication year: 2013 Source:Biophysical Journal, Volume 104, Issue 2, Supplement 1</br> </br> </br> </br></br>
nmrlearner Journal club 0 02-03-2013 10:13 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:42 AM.


Map