Related ArticlesN epsilon,N epsilon-dimethyl-lysine cytochrome c as an NMR probe for lysine involvement in protein-protein complex formation.
Biochem J. 1998 Jun 1;332 ( Pt 2):439-49
Authors: Moore GR, Cox MC, Crowe D, Osborne MJ, Rosell FI, Bujons J, Barker PD, Mauk MR, Mauk AG
The reductively dimethylated derivatives of horse and yeast iso-1-ferricytochromes c have been prepared and characterized for use as NMR probes of the complexes formed by cytochrome c with bovine liver cytochrome b5 and yeast cytochrome c peroxidase. The electrostatic properties and structures of the derivatized cytochromes are not significantly perturbed by the modifications; neither are the electrostatics of protein-protein complex formation or rates of interprotein electron transfer. Two-dimensional 1H-13C NMR spectroscopy of the complexes formed by the derivatized cytochromes with cytochrome b5 and cytochrome c peroxidase has been used to investigate the number and identity of lysine residues of cytochrome c that are involved in interprotein interactions of cytochrome c. The NMR data are incompatible with simple static models proposed previously for the complexes formed by these proteins, but are consistent with the presence of multiple, interconverting complexes of comparable stability, consistent with studies employing Brownian dynamics to model the complexes. The NMR characteristics of the Nepsilon,Nepsilon-dimethyl-lysine groups, their chemical shift dispersion, oxidation state and temperature dependences and the possibility of chemical exchange phenomena are discussed with relevance to the utility of Nepsilon, Nepsilon-dimethyl-lysine's being a generally useful derivative for characterizing protein-protein complexes.
[Question from NMRWiki Q&A forum] Tuning probe failed after a dual probe was replaced with a BBI probe
Tuning probe failed after a dual probe was replaced with a BBI probe
We generally use Dual to run 13C and BBI to run 2D. After changed the probe, the command "edhead" was used to set the probe. Put the sample tube, lock the solvent, and then type "atma" to tune the probe. We always do it like this, but now we can not tune the proton after installed the BBI probe (13C is OK). The dip can not be found by "atma", and "atmm" was also not work on forming a dip. What is the most possible reason for this error? How to solve it and avoid it in the future ? Thanks. (Instrument: Bruker 400 MHz,...
nmrlearner
News from other NMR forums
0
08-23-2011 05:31 PM
[Question from NMRWiki Q&A forum] RDCs di-Methyl lysine
RDCs di-Methyl lysine
We are interested in studying di-methyl lysine, given that in most cases the two methyl groups are equivalent and each have the three protons, how much and if so what, information could you realistically get from RDCs on the Di- methyl signals?
Check if somebody has answered this question on NMRWiki QA forum
nmrlearner
News from other NMR forums
0
03-30-2011 09:11 PM
Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear (1)H-(15)N NMR Spectroscopy.
Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear (1)H-(15)N NMR Spectroscopy.
Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear (1)H-(15)N NMR Spectroscopy.
J Am Chem Soc. 2010 Dec 27;
Authors: Esadze A, Li DW, Wang T, Bru?schweiler R, Iwahara J
Despite their importance in macromolecular interactions and functions, the dynamics of lysine side-chain amino groups in proteins are not well understood. In this study, we have developed the methodology for the investigations of the dynamics...
nmrlearner
Journal club
0
12-29-2010 04:04 PM
Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear 1H-15N NMR Spectroscopy
Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear 1H-15N NMR Spectroscopy
Alexandre Esadze, Da-Wei Li, Tianzhi Wang, Rafael Bru?schweiler and Junji Iwahara
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja107847d/aop/images/medium/ja-2010-07847d_0007.gif
Journal of the American Chemical Society
DOI: 10.1021/ja107847d
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/iFwgRBt-zto
nmrlearner
Journal club
0
12-28-2010 05:27 AM
[NMR paper] Elucidation of the epsilon-theta subunit interface of Escherichia coli DNA polymerase
Elucidation of the epsilon-theta subunit interface of Escherichia coli DNA polymerase III by NMR spectroscopy.
Related Articles Elucidation of the epsilon-theta subunit interface of Escherichia coli DNA polymerase III by NMR spectroscopy.
Biochemistry. 2003 Apr 8;42(13):3635-44
Authors: DeRose EF, Darden T, Harvey S, Gabel S, Perrino FW, Schaaper RM, London RE
The DNA polymerase III holoenzyme (HE) is the primary replicative polymerase of Escherichia coli. The epsilon (epsilon) subunit of HE provides the 3'-->5' exonucleolytic proofreading...
nmrlearner
Journal club
0
11-24-2010 09:01 PM
[NMR paper] Unusual 1H NMR chemical shifts support (His) C(epsilon) 1...O==C H-bond: proposal for
Unusual 1H NMR chemical shifts support (His) C(epsilon) 1...O==C H-bond: proposal for reaction-driven ring flip mechanism in serine protease catalysis.
Related Articles Unusual 1H NMR chemical shifts support (His) C(epsilon) 1...O==C H-bond: proposal for reaction-driven ring flip mechanism in serine protease catalysis.
Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10371-6
Authors: Ash EL, Sudmeier JL, Day RM, Vincent M, Torchilin EV, Haddad KC, Bradshaw EM, Sanford DG, Bachovchin WW
13C-selective NMR, combined with inhibitor perturbation...
nmrlearner
Journal club
0
11-19-2010 08:29 PM
[NMR paper] Structural features of the epsilon subunit of the Escherichia coli ATP synthase deter
Structural features of the epsilon subunit of the Escherichia coli ATP synthase determined by NMR spectroscopy.
Related Articles Structural features of the epsilon subunit of the Escherichia coli ATP synthase determined by NMR spectroscopy.
Nat Struct Biol. 1995 Nov;2(11):961-7
Authors: Wilkens S, Dahlquist FW, McIntosh LP, Donaldson LW, Capaldi RA
The tertiary fold of the epsilon subunit of the Escherichia coli F1F0 ATPsynthase (ECF1F0) has been determined by two- and three-dimensional heteronuclear (13C, 15N) NMR spectroscopy. The epsilon...
nmrlearner
Journal club
0
08-22-2010 03:50 AM
[NMR paper] Carbon-13 NMR studies of the lysine side chains of calmodulin and its proteolytic fra
Carbon-13 NMR studies of the lysine side chains of calmodulin and its proteolytic fragments.
Related Articles Carbon-13 NMR studies of the lysine side chains of calmodulin and its proteolytic fragments.
J Protein Chem. 1993 Dec;12(6):695-707
Authors: Huque ME, Vogel HJ
The pH-titration and dynamic behaviour of the seven lysine side chains in bovine calmodulin were studied by carbon-13 NMR. The amino groups of the calcium saturated protein and its proteolytic fragments TR1C (1-75) and TR2C (78-148) were dimethylated with carbon-13 labeled...