BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-18-2010, 08:31 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Mutational analysis and NMR spectroscopy of quail cysteine and glycine-rich protein C

Mutational analysis and NMR spectroscopy of quail cysteine and glycine-rich protein CRP2 reveal an intrinsic segmental flexibility of LIM domains.

Related Articles Mutational analysis and NMR spectroscopy of quail cysteine and glycine-rich protein CRP2 reveal an intrinsic segmental flexibility of LIM domains.

J Mol Biol. 1999 Oct 1;292(4):893-908

Authors: Kloiber K, Weiskirchen R, Kräutler B, Bister K, Konrat R

The LIM domain is a conserved cysteine and histidine-containing structural module of two tandemly arranged zinc fingers. It has been identified in single or multiple copies in a variety of regulatory proteins, either in combination with defined functional domains, like homeodomains, or alone, like in the CRP family of LIM proteins. Structural studies of CRP proteins have allowed a detailed evaluation of interactions in LIM-domains at the molecular level. The packing interactions in the hydrophobic core have been identified as a significant contribution to the LIM domain fold, whereas hydrogen bonding within each single zinc binding site stabilizes zinc finger geometry in a so-called "outer" or "indirect" coordination sphere. Here we report the solution structure of a point-mutant of the carboxyl-terminal LIM domain of quail cysteine and glycine-rich protein CRP2, CRP2(LIM2)R122A, and discuss the structural consequences of the disruption of the hydrogen bond formed between the guanidinium side-chain of Arg122 and the zinc-coordinating cysteine thiolate group in the CCHC rubredoxin-knuckle. The structural analysis revealed that the three-dimensional structure of the CCHC zinc binding site in CRP2(LIM2)R122A is adapted as a consequence of the modified hydrogen bonding pattern. Additionally, as a result of the conformational rearrangement of the zinc binding site, the packing interactions in the hydrophobic core region are altered, leading to a change in the relative orientation of the two zinc fingers with a concomitant change in the solvent accessibilities of hydrophobic residues located at the interface of the two modules. The backbone dynamics of residues located in the folded part of CRP2(LIM2)R122A have been characterized by proton-detected(15)N NMR spectroscopy. Analysis of the R2/R1ratios revealed a rotational correlation time of approximately 6.2 ns and tumbling with an axially symmetric diffusion tensor (D parallel/D perpendicular=1.43). The relaxation data were also analyzed using a reduced spectral density mapping approach. As in wild-type CRP2(LIM2), significant mobility on a picosecond/nanosecond time-scale was detected, and conformational exchange on a microsecond time-scale was identified for residues located in loop regions between secondary structure elements. In summary, the relative orientation of the two zinc binding sites and the accessibility of hydrophobic residues is not only determined by hydrophobic interactions, but can also be modified by the formation and/or breakage of hydrogen bonds. This may be important for the molecular interactions of an adaptor-type LIM domain protein in macromolecular complexes, particularly for the modulation of protein-protein interactions.

PMID: 10525413 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[KPWU blog] Ramachandran space of Glycine and Proline
Ramachandran space of Glycine and Proline The following two plots are made according to the statistical values provided by the Richardson group. I download the KINEMAGE format of Glycine and Proline. Inside the two files, core and allowed regions are defined and can be extracted to make my own Ramachandran plot. The defined core and allowed regions are also shown in http://stats.wordpress.com/b.gif?host=kpwu.wordpress.com&blog=76132&post=397&subd=kpwu&ref=&feed=1 Go to KPWU blog to read complete post.
nmrlearner News from NMR blogs 0 06-18-2011 03:04 AM
Pb-207 NMR Spectroscopy Reveals that Pb(II) Coordinates with Glutathione (GSH) and Tris Cysteine Zinc Finger Proteins in a PbS(3) Coordination Environment.
Pb-207 NMR Spectroscopy Reveals that Pb(II) Coordinates with Glutathione (GSH) and Tris Cysteine Zinc Finger Proteins in a PbS(3) Coordination Environment. Pb-207 NMR Spectroscopy Reveals that Pb(II) Coordinates with Glutathione (GSH) and Tris Cysteine Zinc Finger Proteins in a PbS(3) Coordination Environment. J Inorg Biochem. 2011 Aug 1;105(8):1030-1034 Authors: Neupane KP, Pecoraro VL (207)Pb NMR spectroscopy can be used to monitor the binding of Pb(II) to thiol rich biological small molecules such as glutathione and to zinc finger proteins. The...
nmrlearner Journal club 0 06-01-2011 02:30 PM
[NMR paper] Mutational, NMR, and NH exchange studies of the tight and selective binding of 8-oxo-
Mutational, NMR, and NH exchange studies of the tight and selective binding of 8-oxo-dGMP by the MutT pyrophosphohydrolase. Related Articles Mutational, NMR, and NH exchange studies of the tight and selective binding of 8-oxo-dGMP by the MutT pyrophosphohydrolase. Biochemistry. 2004 Mar 30;43(12):3404-14 Authors: Saraswat V, Azurmendi HF, Mildvan AS The solution structure of the ternary MutT enzyme-Mg(2+)-8-oxo-dGMP complex showed the proximity of Asn119 and Arg78 and the modified purine ring of 8-oxo-dGMP, suggesting specific roles for...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] Oxygen as a paramagnetic probe of membrane protein structure by cysteine mutagenesis
Oxygen as a paramagnetic probe of membrane protein structure by cysteine mutagenesis and (19)F NMR spectroscopy. Related Articles Oxygen as a paramagnetic probe of membrane protein structure by cysteine mutagenesis and (19)F NMR spectroscopy. J Am Chem Soc. 2002 Feb 27;124(8):1778-81 Authors: Luchette PA, Prosser RS, Sanders CR Oxygen solubility increases toward the hydrophobic interior of membranes. Using NMR, this O(2) solubility gradient gives rise to an exquisite range of position-dependent paramagnetic effects at partial pressures of 100...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] NMR spectroscopy and chemical studies of an arabinan-rich system from the endosperm o
NMR spectroscopy and chemical studies of an arabinan-rich system from the endosperm of the seed of Gleditsia triacanthos. Related Articles NMR spectroscopy and chemical studies of an arabinan-rich system from the endosperm of the seed of Gleditsia triacanthos. Carbohydr Res. 2002 Feb 11;337(3):255-63 Authors: Navarro DA, Cerezo AS, Stortz CA Exhaustive extraction of the endosperm from the seed of Gleditsia triacanthos using water at room temperature and 50 degrees C left a residue, which was further extracted at 95 degrees C. Precipitation of...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] 13C NMR analysis of the cysteine-sulfenic acid redox center of enterococcal NADH pero
13C NMR analysis of the cysteine-sulfenic acid redox center of enterococcal NADH peroxidase. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles 13C NMR analysis of the cysteine-sulfenic acid redox center of enterococcal NADH peroxidase. Biochemistry. 1997 Jul 15;36(28):8611-8 Authors: Crane EJ, Vervoort J, Claiborne A In order to characterize the native Cys42-sulfenic acid redox center of the flavoprotein NADH peroxidase by NMR, an expression protocol has been developed which yields the...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] Internal motion time scales of a small, highly stable and disulfide-rich protein: a 1
Internal motion time scales of a small, highly stable and disulfide-rich protein: a 15N, 13C NMR and molecular dynamics study. Related Articles Internal motion time scales of a small, highly stable and disulfide-rich protein: a 15N, 13C NMR and molecular dynamics study. J Biomol NMR. 1999 May;14(1):47-66 Authors: Guenneugues M, Gilquin B, Wolff N, Ménez A, Zinn-Justin S Motions of the backbone C alpha H alpha and threonine C beta H beta bonds of toxin alpha were investigated using natural abundance 13C NMR and molecular dynamics. Measurement...
nmrlearner Journal club 0 08-21-2010 04:03 PM
Analysis of and chemical shifts of cysteine and cystine residues in proteins: a quant
Abstract Cysteines possess a unique property among the 20 naturally occurring amino acids: it can be present in proteins in either the reduced or oxidized form, and can regulate the activity of some proteins. Consequently, to augment our previous treatment of the other types of residues, the 13\textC\upalpha and 13\textC\upbeta chemical shifts of 837 cysteines in disulfide-bonded cystine from a set of seven non-redundant proteins, determined by X-ray crystallography and NMR spectroscopy, were computed at the DFT level of theory. Our results indicate that the errors between observed...
nmrlearner Journal club 0 08-14-2010 04:19 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:51 PM.


Map