Binding of the protein cyanovirin-N to oligomannose-8 and oligomannose-9 of gp120 is crucially involved in its potent virucidal activity against the human immunodeficiency virus (HIV). The interaction between cyanovirin-N and these oligosaccharides has not been thoroughly characterized due to aggregation of the oligosaccharide-protein complexes. Here, cyanovirin-N's interaction with a nonamannoside, a structural analog of oligomannose-9, has been studied by nuclear magnetic resonance and isothermal titration calorimetry. The nonamannoside interacts with cyanovirin-N in a multivalent fashion, resulting in tight complexes with an average 1:1 stoichiometry. Like the nonamannoside, an alpha1-->2-linked trimannoside substructure interacts with cyanovirin-N at two distinct protein subsites. The chitobiose and internal core trimannoside substructures of oligomannose-9 are not recognized by cyanovirin-N, and binding of the core hexamannoside occurs at only one of the sites on the protein. This is the first detailed analysis of a biologically relevant interaction between cyanovirin-N and high-mannose oligosaccharides of HIV-1 gp120.
Domain Swapping Proceedsvia Complete Unfolding: A 19F- and 1H-NMR Studyof the Cyanovirin-N Protein
Domain Swapping Proceedsvia Complete Unfolding: A 19F- and 1H-NMR Studyof the Cyanovirin-N Protein
Lin Liu, In-Ja L. Byeon, Ivet Bahar and Angela M. Gronenborn
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja210118w/aop/images/medium/ja-2011-10118w_0007.gif
Journal of the American Chemical Society
DOI: 10.1021/ja210118w
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/vh5BfRyKD-8
nmrlearner
Journal club
0
02-23-2012 07:38 AM
Quantitative Analysisof Multisite Protein–LigandInteractions by NMR: Binding of Intrinsically Disordered p53 TransactivationSubdomains with the TAZ2 Domain of CBP
Quantitative Analysisof Multisite Protein–LigandInteractions by NMR: Binding of Intrinsically Disordered p53 TransactivationSubdomains with the TAZ2 Domain of CBP
Munehito Arai, Josephine C. Ferreon and Peter E. Wright
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja209936u/aop/images/medium/ja-2011-09936u_0012.gif
Journal of the American Chemical Society
DOI: 10.1021/ja209936u
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/ak4BxkITHl8
nmrlearner
Journal club
0
02-16-2012 05:24 AM
NMR solution structure of a cyanovirin homolog from wheat head blight fungus.
NMR solution structure of a cyanovirin homolog from wheat head blight fungus.
NMR solution structure of a cyanovirin homolog from wheat head blight fungus.
Proteins. 2011 Jan 18;
Authors: Matei E, Louis JM, Jee J, Gronenborn AM
Members of the cyanovirin-N homolog (CVNH) lectin family are found in bacteria, fungi and plants. As part of our ongoing work on CVNH structure-function studies, we determined the high-resolution NMR solution structure of the homolog from the wheat head blight disease causing ascomycetous fungus Gibberella zeae (or Fusarium...
nmrlearner
Journal club
0
03-03-2011 12:34 PM
A Solution NMR Study of the Interactions of Oligomannosides and the Anti-HIV-1 2G12 Antibody Reveals Distinct Binding Modes for Branched Ligands*
A Solution NMR Study of the Interactions of Oligomannosides and the Anti-HIV-1 2G12 Antibody Reveals Distinct Binding Modes for Branched Ligands*
A Solution NMR Study of the Interactions of Oligomannosides and the Anti-HIV-1 2G12 Antibody Reveals Distinct Binding Modes for Branched Ligands*
Chemistry. 2011 Feb 1;17(5):1547-1560
Authors: Enríquez-Navas PM, Marradi M, Padro D, Angulo J, Penadés S
The structural and affinity details of the interactions of synthetic oligomannosides, linear (di-, tri-, and tetra-) and branched (penta- and hepta-),...
nmrlearner
Journal club
0
01-27-2011 02:52 PM
A Solution NMR Study of the Interactions of Oligomannosides and the Anti-HIV-1 2G12 Antibody Reveals Distinct Binding Modes for Branched Ligands*
A Solution NMR Study of the Interactions of Oligomannosides and the Anti-HIV-1 2G12 Antibody Reveals Distinct Binding Modes for Branched Ligands*
A Solution NMR Study of the Interactions of Oligomannosides and the Anti-HIV-1 2G12 Antibody Reveals Distinct Binding Modes for Branched Ligands*
Chemistry. 2011 Jan 5;
Authors: Enríquez-Navas PM, Marradi M, Padro D, Angulo J, Penadés S
The structural and affinity details of the interactions of synthetic oligomannosides, linear (di-, tri-, and tetra-) and branched (penta- and hepta-), with the broadly...
nmrlearner
Journal club
0
01-06-2011 11:21 AM
[NMR paper] Atomic mapping of the interactions between the antiviral agent cyanovirin-N and oligo
Atomic mapping of the interactions between the antiviral agent cyanovirin-N and oligomannosides by saturation-transfer difference NMR.
Related Articles Atomic mapping of the interactions between the antiviral agent cyanovirin-N and oligomannosides by saturation-transfer difference NMR.
Biochemistry. 2004 Nov 9;43(44):13926-31
Authors: Sandström C, Berteau O, Gemma E, Oscarson S, Kenne L, Gronenborn AM
The minimum oligosaccharide structure required for binding to the potent HIV-inactivating protein cyanovirin-N (CV-N) was determined by...
nmrlearner
Journal club
0
11-24-2010 10:03 PM
[NMR paper] The domain-swapped dimer of cyanovirin-N is in a metastable folded state: reconciliat
The domain-swapped dimer of cyanovirin-N is in a metastable folded state: reconciliation of X-ray and NMR structures.
Related Articles The domain-swapped dimer of cyanovirin-N is in a metastable folded state: reconciliation of X-ray and NMR structures.
Structure. 2002 May;10(5):673-86
Authors: Barrientos LG, Louis JM, Botos I, Mori T, Han Z, O'Keefe BR, Boyd MR, Wlodawer A, Gronenborn AM
The structure of the potent HIV-inactivating protein cyanovirin-N was previously found by NMR to be a monomer in solution and a domain-swapped dimer by X-ray...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
Defining a Stem Length-Dependent Binding Mechanism for the Cocaine-Binding Aptamer. A
Defining a Stem Length-Dependent Binding Mechanism for the Cocaine-Binding Aptamer. A Combined NMR and Calorimetry Study
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi100952k/aop/images/medium/bi-2010-00952k_0010.gif
Biochemistry
DOI: 10.1021/bi100952k
http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/bichaw/~4/HDHRgmphxQs
More...