Related ArticlesMultiple quantum filtered NMR studies of the interaction between collagen and water in the tendon.
J Am Chem Soc. 2002 Mar 27;124(12):3125-32
Authors: Eliav U, Navon G
We studied the physical processes and the chemical reactions involved in magnetization transfer between water and large proteins, such as collagen, in bovine Achilles tendon. Since the NMR spectrum for such proteins is broadened by very large dipolar interactions, the NMR peaks of the various functional groups on the protein cannot be separated from one another on the basis of their different chemical shifts. A further complication in observing the protein spectrum is the intense narrow peak of the abundant water. Thus, magnetization transfer (MT) within the protein or between water and the protein cannot rely on differences in the chemical shifts, as is commonly possible in liquids. We present a method that separates the protein spectrum from that of the water spectrum on the basis of their different intramolecular dipolar interactions, enabling exclusive excitation of either the protein or water. As a result, the protein spectrum as well as the effect of spin diffusion within the protein can be measured. In addition, the MT rates from the protein to water and vice versa can be measured. Two types of mechanisms were considered for the MT: chemical exchange- and dipolar interaction-related processes (such as NOE). They were distinguished by examining the effects of the following experimental conditions: (a) temperature; (b) pH; (c) ratio of D(2)O to H(2)O in the bathing liquid; (d) interaction of the protein with small molecules other than water, such as DMSO and methanol. Our results lead us to the conclusion that the MT is dominated below the freezing point by the dipolar interaction between the protein and water, while an exchange of protons between the protein and the water molecules is the most significant process above the freezing point. On the basis of the fact that the spin temperature is established for the protein on a time scale much shorter than that of the MT, we could measure protein spectra that are distinguished by the contributions made to them by the various functional groups; i.e., contributions of methylenes were distinguished from those of methyls.
Estimating side-chain order in methyl-protonated, perdeuterated proteins via multiple-quantum relaxation violated coherence transfer NMR spectroscopy
Estimating side-chain order in methyl-protonated, perdeuterated proteins via multiple-quantum relaxation violated coherence transfer NMR spectroscopy
Abstract Relaxation violated coherence transfer NMR spectroscopy (Tugarinov et al. in J Am Chem Soc 129:1743â??1750, 2007) is an established experimental tool for quantitative estimation of the amplitudes of side-chain motions in methyl-protonated, highly deuterated proteins. Relaxation violated coherence transfer experiments monitor the build-up of methyl proton multiple-quantum coherences that can be created in magnetically equivalent...
nmrlearner
Journal club
0
02-11-2012 10:31 AM
Multiplet-filtered and gradient-selected zero-quantum TROSY experiments for 13C1H3 methyl groups in proteins
Multiplet-filtered and gradient-selected zero-quantum TROSY experiments for 13C1H3 methyl groups in proteins
Abstract Multiplet-filtered and gradient-selected heteronuclear zero-quantum coherence (gsHZQC) TROSY experiments are described for measuring 1Hâ??13C correlations for 13CH3 methyl groups in proteins. These experiments provide improved suppression of undesirable, broad outer components of the heteronuclear zero-quantum multiplet in medium-sized proteins, or in flexible sites of larger proteins, compared to previously described HZQC sequences (Tugarinov et al. in J Am Chem Soc...
nmrlearner
Journal club
0
09-17-2011 10:20 AM
Very simple combination of TROSY, CRINEPT and multiple quantum coherence for signal enhancement in an HN(CO)CA experiment for large proteins
Very simple combination of TROSY, CRINEPT and multiple quantum coherence for signal enhancement in an HN(CO)CA experiment for large proteins
Publication year: 2011
Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 3 February 2011</br>
Monika, Bayrhuber , Roland, Riek</br>
Sensitivity enhancement in liquid state nuclear magnetic resonance (NMR) triple resonance experiments for the sequential assignment of proteins is important for the investigation of large proteins or protein complexes. We present here the 3D TROSY-MQ/CRINEPT-HN(CO)CA which makes...
nmrlearner
Journal club
0
02-04-2011 07:03 AM
[NMR paper] Effect of thermal denaturation on water-collagen interactions: NMR relaxation and dif
Effect of thermal denaturation on water-collagen interactions: NMR relaxation and differential scanning calorimetry analysis.
Related Articles Effect of thermal denaturation on water-collagen interactions: NMR relaxation and differential scanning calorimetry analysis.
Biopolymers. 1999 Dec;50(7):690-6
Authors: Rochdi A, Foucat L, Renou JP
The dependence of the proton spin-lattice relaxation rate, and of the enthalpy and temperature of denaturation on water content, were studied by nmr and differential scanning calorimetry (DSC) in native and...
nmrlearner
Journal club
0
11-18-2010 08:31 PM
[NMR paper] NMR triple-quantum filtered relaxation analysis of 17O-water in insulin solutions: an
NMR triple-quantum filtered relaxation analysis of 17O-water in insulin solutions: an insight into the aggregation of insulin and the properties of its bound water.
Related Articles NMR triple-quantum filtered relaxation analysis of 17O-water in insulin solutions: an insight into the aggregation of insulin and the properties of its bound water.
Biophys Chem. 1998 Mar 9;70(3):231-9
Authors: Torres AM, Grieve SM, Kuchel PW
Transverse triple-quantum filtered NMR spectroscopy (TTQF) of 17O-water was used to study the properties of water in insulin...
nmrlearner
Journal club
0
11-17-2010 11:06 PM
[NMR paper] Strong and weak binding of water to proteins studied by NMR triple-quantum filtered r
Strong and weak binding of water to proteins studied by NMR triple-quantum filtered relaxation spectroscopy of (17)O-water.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Strong and weak binding of water to proteins studied by NMR triple-quantum filtered relaxation spectroscopy of (17)O-water.
Biophys Chem. 1997 Sep 1;67(1-3):187-98
Authors: Torres AM, Grieve SM, Chapman BE, Kuchel PW
The triple-quantum filtered (TQF) spin-echo signal of (17)O-water, in the presence...
nmrlearner
Journal club
0
08-22-2010 05:08 PM
[NMR paper] NMR study of collagen-water interactions.
NMR study of collagen-water interactions.
Related Articles NMR study of collagen-water interactions.
Biopolymers. 1994 Dec;34(12):1615-26
Authors: Renou JP, Bonnet M, Bielicki G, Rochdi A, Gatellier P
A proton magnetic resonance study of different cross-linked collagens was performed as a function of water content and temperature. Collagens from three connective tissues (calf, steer, and cow) were chosen according to the different number of nonreducible multivalent cross-links, which increases during the life of animal. Samples were hydrated...
nmrlearner
Journal club
0
08-22-2010 03:29 AM
[NMR paper] Characterisation by triple-quantum filtered 17O-NMR of water molecules buried in lyso
Characterisation by triple-quantum filtered 17O-NMR of water molecules buried in lysozyme and trapped in a lysozyme-inhibitor complex.
Related Articles Characterisation by triple-quantum filtered 17O-NMR of water molecules buried in lysozyme and trapped in a lysozyme-inhibitor complex.
Biophys Chem. 1999 Mar 29;77(2-3):111-21
Authors: Baguet E, Hennebert N
Triple-quantum filtering NMR sequences were used to study the multiexponential relaxation behaviour of H2 17O in the presence of hen egg white lysozyme. By this means, the fraction and the...