[NMR paper] Multiple Locations of Peptides in the Hydrocarbon Core of Gel-Phase Membranes Revealed by Peptide (13)C to Lipid (2)H REDOR Solid-State NMR.
Multiple Locations of Peptides in the Hydrocarbon Core of Gel-Phase Membranes Revealed by Peptide (13)C to Lipid (2)H REDOR Solid-State NMR.
Biochemistry. 2014 Dec 22;
Authors: Weliky DP
Abstract
Membrane locations of peptides and proteins are often critical to their functions. Solid-state rotational-echo double-resonance (REDOR) NMR is applied to probe the locations of two peptides via peptide (13)CO to lipid (2)H distance measurements. The peptides are KALP, an ? helical membrane-spanning peptide and HFP, the ? sheet N-terminal fusion peptide of the HIV gp41 fusion protein that plays an important role in HIV/host cell membrane fusion. Both peptides are shown to have at least two distinct locations within the hydrocarbon core of gel-phase membranes. The multiple locations are attributed to snorkeling of lysine sidechains for KALP and to the distribution of antiparallel ? sheet registries for HFP. The relative population of each location is also quantitated. To our knowledge, this is the first clear experimental support of multiple peptide locations within the membrane hydrocarbon core. The present data are for gel-phase membranes but the approach should work for liquid-ordered membranes containing cholesterol and may be applicable to liquid-disordered membranes with appropriate additional analysis to take into account protein and lipid motion. This paper also describes methodological development of (13)CO-(2)H REDOR using the lyophilized I4 peptide which is ? helical and (13)CO-labeled at A9 and (2)H?-labeled at A8. The I4 spins are well-approximated as an ensemble of isolated (13)CO-(2)H spin pairs each separated by 5.0 Ċ with 37 Hz dipolar coupling. A pulse sequence with rectangular 100 kHz (2)H pulses results in rapid and extensive buildup of REDOR (?S/S0) with dephasing time (?). The buildup is well-fitted by a simple exponential function with rate = 24 Hz and extent close to 1. These parameter values reflect non-radiative transitions between the (2)H spin states during the dephasing period. Each spin pair spends ~2/3 time in the (13)CO-(2)H (m=+1) states and ~1/3 time in the (13)CO-(2)H (m=0) state and contributes to the (?S/S0) buildup during the former but not the latter time segments.
PMID: 25531389 [PubMed - as supplied by publisher]
Cryoprotection of lipid membranes for high-resolution solid-state NMR studies of membrane peptides and proteins at low temperature
From The DNP-NMR Blog:
Cryoprotection of lipid membranes for high-resolution solid-state NMR studies of membrane peptides and proteins at low temperature
Solid-state DNP-NMR are typically performed at cryogenic temperatures and samples, especially bio-macromolecules often require cryo-protection. This is a recent review about sample preparation and cryo-protecting samples to preserve the spectral resolution.
Lee, M. and M. Hong, Cryoprotection of lipid membranes for high-resolution solid-state NMR studies of membrane peptides and proteins at low temperature. J Biomol NMR, 2014....
nmrlearner
News from NMR blogs
0
08-27-2014 02:29 PM
[NMR paper] Cryoprotection of lipid membranes for high-resolution solid-state NMR studies of membrane peptides and proteins at low temperature.
Cryoprotection of lipid membranes for high-resolution solid-state NMR studies of membrane peptides and proteins at low temperature.
Related Articles Cryoprotection of lipid membranes for high-resolution solid-state NMR studies of membrane peptides and proteins at low temperature.
J Biomol NMR. 2014 Jul 12;
Authors: Lee M, Hong M
Abstract
Solid-state NMR spectra of membrane proteins often show significant line broadening at cryogenic temperatures. Here we investigate the effects of several cryoprotectants to preserve the...
nmrlearner
Journal club
0
07-13-2014 06:48 PM
Cryoprotection of lipid membranes for high-resolution solid-state NMR studies of membrane peptides and proteins at low temperature
Cryoprotection of lipid membranes for high-resolution solid-state NMR studies of membrane peptides and proteins at low temperature
Abstract
Solid-state NMR spectra of membrane proteins often show significant line broadening at cryogenic temperatures. Here we investigate the effects of several cryoprotectants to preserve the spectral resolution of lipid membranes and membrane peptides at temperatures down to ~200Â*K. Trehalose, glycerol, dimethylsulfoxide (DMSO), dimethylformamide (DMF), and polyethylene glycol (PEG), were chosen. These compounds are...
nmrlearner
Journal club
0
07-12-2014 06:07 PM
[NMR paper] A 2H solid-state NMR study of lipid clustering by cationic antimicrobial and cell-penetrating peptides in model bacterial membranes.
A 2H solid-state NMR study of lipid clustering by cationic antimicrobial and cell-penetrating peptides in model bacterial membranes.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-cellhub.gif Related Articles A 2H solid-state NMR study of lipid clustering by cationic antimicrobial and cell-penetrating peptides in model bacterial membranes.
Biophys J. 2013 Nov 19;105(10):2333-42
Authors: Kwon B, Waring AJ, Hong M
Abstract
Domain formation in bacteria-mimetic membranes...
nmrlearner
Journal club
0
07-12-2014 04:28 AM
[NMR paper] The G-Protein-Coupled Neuropeptide Y Receptor Type 2 is Highly Dynamic in Lipid Membranes as Revealed by Solid-State NMR Spectroscopy.
The G-Protein-Coupled Neuropeptide Y Receptor Type 2 is Highly Dynamic in Lipid Membranes as Revealed by Solid-State NMR Spectroscopy.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles The G-Protein-Coupled Neuropeptide Y Receptor Type 2 is Highly Dynamic in Lipid Membranes as Revealed by Solid-State NMR Spectroscopy.
Chemistry. 2014 Mar 13;
Authors: Schmidt P, Thomas L, Müller P, Scheidt HA, Huster D
Abstract
nmrlearner
Journal club
0
03-14-2014 07:34 PM
Conformation and Lipid Interaction of the Fusion Peptide of the Paramyxovirus PIV5 in Anionic and Negative-Curvature Membranes from Solid-State NMR
Conformation and Lipid Interaction of the Fusion Peptide of the Paramyxovirus PIV5 in Anionic and Negative-Curvature Membranes from Solid-State NMR
Hongwei Yao and Mei Hong
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja4121956/aop/images/medium/ja-2013-121956_0011.gif
Journal of the American Chemical Society
DOI: 10.1021/ja4121956
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/ND8oy78Fk1s
nmrlearner
Journal club
0
01-31-2014 05:55 AM
[NMR paper] Conformation and Lipid Interaction of the Fusion Peptide of the Paramyxovirus PIV5 in Anionic and Negative-Curvature Membranes From Solid-State NMR.
Conformation and Lipid Interaction of the Fusion Peptide of the Paramyxovirus PIV5 in Anionic and Negative-Curvature Membranes From Solid-State NMR.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Conformation and Lipid Interaction of the Fusion Peptide of the Paramyxovirus PIV5 in Anionic and Negative-Curvature Membranes From Solid-State NMR.
J Am Chem Soc. 2014 Jan 16;
Authors: Yao H, Hong M
Abstract
Viral fusion proteins catalyze the merger of the virus...
nmrlearner
Journal club
0
01-17-2014 11:07 PM
[NMR paper] Interaction of the fusogenic peptide B18 in its amyloid-state with lipid membranes st
Interaction of the fusogenic peptide B18 in its amyloid-state with lipid membranes studied by solid state NMR.
Related Articles Interaction of the fusogenic peptide B18 in its amyloid-state with lipid membranes studied by solid state NMR.
Chem Phys Lipids. 2004 Nov;132(1):65-77
Authors: Grage SL, Afonin S, Grüne M, Ulrich AS
The interaction of the fusogenic polypeptide segment "B18" from the fertilization protein binding with lipid membranes was investigated by solid state 2H and 31P NMR, and by differential scanning calorimetry. B18 is known...