Exchange between conformational states is required for biomolecular catalysis, allostery, and folding. A variety of NMR experiments have been developed to quantify motional regimes ranging from nanoseconds to seconds. In this work, we describe an approach to speed up the acquisition of chemical exchange saturation transfer (CEST) experiments that are commonly used to probe millisecond to second conformational exchange in proteins and nucleic acids. The standard approach is to obtain CEST datasets through the acquisition of a series of 2D correlation spectra where each experiment utilizes a single saturation frequency to 1H, 15N or 13C. These pseudo 3D datasets are time consuming to collect and are further lengthened by reduced signal to noise stemming from the long saturation pulse. In this article, we show how usage of a multiple frequency saturation pulse (i.e., MF-CEST) changes the nature of data collection from series to parallel, and thus decreases the total acquisition time by an integer factor corresponding to the number of frequencies in the pulse. We demonstrate the applicability of MF-CEST on a Src homology 2 (SH2) domain from phospholipase Cγ and the secondary active transport protein EmrE as model systems by collecting 13C methyl and 15N backbone datasets. MF-CEST can also be extended to additional sites within proteins and nucleic acids. The only notable drawback of MF-CEST as applied to backbone 15N experiments occurs when a large chemical shift difference between the major and minor populations is present (typically greater than ~â??8Â*ppm). In these cases, ambiguity may arise between the chemical shift of the minor population and the multiple frequency saturation pulse. Nevertheless, this drawback does not occur for methyl group MF-CEST experiments or in cases where somewhat smaller chemical shift differences occur are present.
Probing conformational dynamics in biomolecules via chemical exchange saturation transfer: a primer
Probing conformational dynamics in biomolecules via chemical exchange saturation transfer: a primer
Abstract
Although Chemical Exchange Saturation Transfer (CEST) type NMR experiments have been used to study chemical exchange processes in molecules since the early 1960s, there has been renewed interest in the past several years in using this approach to study biomolecular conformational dynamics. The methodology is particularly powerful for the study of sparsely populated, transiently formed conformers that are recalcitrant to investigation using...
nmrlearner
Journal club
0
03-19-2017 10:38 PM
[U. of Ottawa NMR Facility Blog] CEST - Chemical Exchange Saturation Transfer
CEST - Chemical Exchange Saturation Transfer
Chemical Exchange Saturation Transfer (CEST) is a technique where one resonance, in slow exchange with a second resonance, is saturated with a selective low power pulse followed by a hard non-selective 90° pulse. The intensity of the second resonance is then diminished due to the transfer of saturation from the first resonance as the result of chemical exchange. The figure below demonstrates this for a 25 mM solution of salicylic acid in H2O/D2O buffered at pH 7. ...
nmrlearner
News from NMR blogs
0
04-22-2016 08:45 PM
[NMR paper] (13)CHD 2-CEST NMR spectroscopy provides an avenue for studies of conformational exchange in high molecular weight proteins.
(13)CHD 2-CEST NMR spectroscopy provides an avenue for studies of conformational exchange in high molecular weight proteins.
Related Articles (13)CHD 2-CEST NMR spectroscopy provides an avenue for studies of conformational exchange in high molecular weight proteins.
J Biomol NMR. 2015 Aug 14;
Authors: Rennella E, Huang R, Velyvis A, Kay LE
Abstract
An NMR experiment for quantifying slow (millisecond) time-scale exchange processes involving the interconversion between visible ground state and invisible, conformationally excited...
nmrlearner
Journal club
0
08-15-2015 04:01 PM
13 CHD 2 â??CEST NMR spectroscopy provides an avenue for studies of conformational exchange in high molecular weight proteins
13 CHD 2 â??CEST NMR spectroscopy provides an avenue for studies of conformational exchange in high molecular weight proteins
Abstract
An NMR experiment for quantifying slow (millisecond) time-scale exchange processes involving the interconversion between visible ground state and invisible, conformationally excited state conformers is presented. The approach exploits chemical exchange saturation transfer (CEST) and makes use of 13CHD2 methyl group probes that can be readily incorporated into otherwise highly deuterated proteins. The methodology is...
Mathematical treatment of adiabatic fast passage pulses for the computation of nuclear spin relaxation rates in proteins with conformational exchange
Mathematical treatment of adiabatic fast passage pulses for the computation of nuclear spin relaxation rates in proteins with conformational exchange
Abstract Although originally designed for broadband inversion and decoupling in NMR spectroscopy, recent methodological developments have introduced adiabatic fast passage (AFP) pulses into the field of protein dynamics. AFP pulses employ a frequency sweep, and have not only superior inversion properties with respect to offset effects, but they are also easily implemented into a pulse sequence. As magnetization is dragged from the +z to...
nmrlearner
Journal club
0
09-30-2011 08:01 PM
Quantifying millisecond time-scale exchange in proteins by CPMG relaxation dispersion NMR spectroscopy of side-chain carbonyl groups
Quantifying millisecond time-scale exchange in proteins by CPMG relaxation dispersion NMR spectroscopy of side-chain carbonyl groups
Abstract A new pulse sequence is presented for the measurement of relaxation dispersion profiles quantifying millisecond time-scale exchange dynamics of side-chain carbonyl groups in uniformly 13C labeled proteins. The methodology has been tested using the 87-residue colicin E7 immunity protein, Im7, which is known to fold via a partially structured low populated intermediate that interconverts with the folded, ground state on the millisecond time-scale....
nmrlearner
Journal club
0
06-20-2011 03:31 PM
Quantifying millisecond time-scale exchange in proteins by CPMG relaxation dispersion NMR spectroscopy of side-chain carbonyl groups.
Quantifying millisecond time-scale exchange in proteins by CPMG relaxation dispersion NMR spectroscopy of side-chain carbonyl groups.
Quantifying millisecond time-scale exchange in proteins by CPMG relaxation dispersion NMR spectroscopy of side-chain carbonyl groups.
J Biomol NMR. 2011 Jun 18;
Authors: Hansen AL, Kay LE
A new pulse sequence is presented for the measurement of relaxation dispersion profiles quantifying millisecond time-scale exchange dynamics of side-chain carbonyl groups in uniformly (13)C labeled proteins. The methodology has...