BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 05-03-2014, 10:42 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Multimodality characterization of microstructure by the combination of diffusion NMR and time-domain diffuse optical data.

Multimodality characterization of microstructure by the combination of diffusion NMR and time-domain diffuse optical data.

Related Articles Multimodality characterization of microstructure by the combination of diffusion NMR and time-domain diffuse optical data.

Phys Med Biol. 2014 May 1;59(11):2639-2658

Authors: Proverbio A, Siow BM, Lythgoe MF, Alexander DC, Gibson AP

Abstract
Combining datasets with a model of the underlying physics prior to mapping of tissue provides a novel approach improving the estimation of parameters. We demonstrate this approach by merging near infrared diffuse optical signal data with diffusion NMR data to inform a model describing the microstructure of a sample. The study is conducted on a homogeneous emulsion of oil in a dispersion medium of water and proteins. The use of a protein based background, rich in collagen, introduces a similarity to real tissues compared to other models such as intralipids. The sample is investigated with the two modalities separately. Then, the two datasets are used to inform a combined model, and to estimate the size of the microstructural elements and the volume fraction. The combined model fits the microstructural properties by minimizing the difference between experimental and modelled data. The experimental results are validated with confocal laser scanning microscopy. The final results demonstrate that the combined model provides improved estimates of microstructural parameters compared to either individual model alone.


PMID: 24786607 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Magnetic resonance diffusion and relaxation characterization of water in the unfrozen vein network in polycrystalline ice and its response to microbial metabolic products
Magnetic resonance diffusion and relaxation characterization of water in the unfrozen vein network in polycrystalline ice and its response to microbial metabolic products December 2012 Publication year: 2012 Source:Journal of Magnetic Resonance, Volume 225</br> </br> Polycrystalline ice, as found in glaciers and the ice sheets of Antarctica, is a low porosity porous media consisting of a complicated and dynamic pore structure of liquid-filled intercrystalline veins within a solid ice matrix. In this work, Nuclear Magnetic Resonance measurements of relaxation rates and...
nmrlearner Journal club 0 12-15-2012 09:51 AM
Magnetic resonance diffusion and relaxation characterization of water in the unfrozen vein network in polycrystalline ice and its response to microbial metabolic products
Magnetic resonance diffusion and relaxation characterization of water in the unfrozen vein network in polycrystalline ice and its response to microbial metabolic products December 2012 Publication year: 2012 Source:Journal of Magnetic Resonance, Volume 225</br> </br> Polycrystalline ice, as found in glaciers and the ice sheets of Antarctica, is a low porosity porous media consisting of a complicated and dynamic pore structure of liquid-filled intercrystalline veins within a solid ice matrix. In this work, Nuclear Magnetic Resonance measurements of relaxation rates and...
nmrlearner Journal club 0 12-01-2012 06:10 PM
Characterization of the ground state dynamics of proteorhodopsin by NMR and optical spectroscopies
Characterization of the ground state dynamics of proteorhodopsin by NMR and optical spectroscopies Abstract We characterized the dynamics of proteorhodopsin (PR), solubilized in diC7PC, a detergent micelle, by liquid-state NMR spectroscopy at T = 323 K. Insights into the dynamics of PR at different time scales could be obtained and dynamic hot spots could be identified at distinct, functionally relevant regions of the protein, including the BC loop, the EF loop, the N-terminal part of helix F and the C-terminal part of helix G. We further characterize the dependence of the photocycle...
nmrlearner Journal club 0 11-22-2012 05:27 AM
Magnetic Resonance Diffusion and Relaxation Characterization of Water in the Unfrozen Vein Network in Polycrystalline Ice and its Response to Microbial Metabolic Products
Magnetic Resonance Diffusion and Relaxation Characterization of Water in the Unfrozen Vein Network in Polycrystalline Ice and its Response to Microbial Metabolic Products Publication year: 2012 Source:Journal of Magnetic Resonance</br> Jennifer R. Brown, Timothy I. Brox, Sarah J. Vogt, Joseph D. Seymour, Mark Skidmore, Sarah L. Codd</br> Polycrystalline ice, as found in glaciers and the ice sheets of Antarctica, is a low porosity porous media consisting of a complicated and dynamic pore structure of liquid-filled intercrystalline veins within a solid ice matrix. In...
nmrlearner Journal club 0 10-05-2012 09:10 AM
[NMR paper] NMR backbone assignment of a protein kinase catalytic domain by a combination of seve
NMR backbone assignment of a protein kinase catalytic domain by a combination of several approaches: application to the catalytic subunit of cAMP-dependent protein kinase. Related Articles NMR backbone assignment of a protein kinase catalytic domain by a combination of several approaches: application to the catalytic subunit of cAMP-dependent protein kinase. Chembiochem. 2004 Nov 5;5(11):1508-16 Authors: Langer T, Vogtherr M, Elshorst B, Betz M, Schieborr U, Saxena K, Schwalbe H Protein phosphorylation is one of the most important mechanisms...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] Residue-specific real-time NMR diffusion experiments define the association states of
Residue-specific real-time NMR diffusion experiments define the association states of proteins during folding. Related Articles Residue-specific real-time NMR diffusion experiments define the association states of proteins during folding. J Am Chem Soc. 2002 Jun 19;124(24):7156-62 Authors: Buevich AV, Baum J Characterizing the association states of proteins during folding is critical for understanding the nature of protein-folding intermediates and protein-folding pathways, protein aggregation, and disease-related aggregation. To study the...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Real-time and equilibrium (19)F-NMR studies reveal the role of domain-domain interact
Real-time and equilibrium (19)F-NMR studies reveal the role of domain-domain interactions in the folding of the chaperone PapD. Related Articles Real-time and equilibrium (19)F-NMR studies reveal the role of domain-domain interactions in the folding of the chaperone PapD. Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):709-14 Authors: Bann JG, Pinkner J, Hultgren SJ, Frieden C PapD is a periplasmic chaperone essential for P pilus formation in pyelonephritic strains of E. coli. It is composed of two domains, each of which contains a tryptophan...
nmrlearner Journal club 0 11-24-2010 08:49 PM
NMR Studies on Domain Diffusion and Alignment in Modular GB1 Repeats.
NMR Studies on Domain Diffusion and Alignment in Modular GB1 Repeats. Related Articles NMR Studies on Domain Diffusion and Alignment in Modular GB1 Repeats. Biophys J. 2010 Oct 20;99(8):2636-46 Authors: Walsh JD, Meier K, Ishima R, Gronenborn AM Modular proteins contain individual domains that are often connected by flexible, unstructured linkers. Using a model system based on the GB1 domain, we constructed tandem repeat proteins and investigated the rotational diffusion and long-range angular ordering behavior of individual domains by measuring...
nmrlearner Journal club 0 10-22-2010 06:02 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:06 AM.


Map