BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-13-2011, 12:57 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Multi-dimensional NMR without coherence transfer: Minimizing losses in large systems.

Multi-dimensional NMR without coherence transfer: Minimizing losses in large systems.

Multi-dimensional NMR without coherence transfer: Minimizing losses in large systems.

J Magn Reson. 2011 Jul 21;

Authors: Liu Y, Prestegard JH

Most multi-dimensional solution NMR experiments connect one dimension to another using coherence transfer steps that involve evolution under scalar couplings. While experiments of this type have been a boon to biomolecular NMR the need to work on ever larger systems pushes the limits of these procedures. Spin relaxation during transfer periods for even the most efficient (15)N-(1)H HSQC experiments can result in more than an order of magnitude loss in sensitivity for molecules in the 100kDa range. A relatively unexploited approach to preventing signal loss is to avoid coherence transfer steps entirely. Here we describe a scheme for multi-dimensional NMR spectroscopy that relies on direct frequency encoding of a second dimension by multi-frequency decoupling during acquisition, a technique that we call MD-DIRECT. A substantial improvement in sensitivity of (15)N-(1)H correlation spectra is illustrated with application to the 21kDa ADP ribosylation factor (ARF) labeled with (15)N in all alanine residues. Operation at 4°C mimics observation of a 50kDa protein at 35°C.

PMID: 21835658 [PubMed - as supplied by publisher]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Estimating side-chain order in methyl-protonated, perdeuterated proteins via multiple-quantum relaxation violated coherence transfer NMR spectroscopy
Estimating side-chain order in methyl-protonated, perdeuterated proteins via multiple-quantum relaxation violated coherence transfer NMR spectroscopy Abstract Relaxation violated coherence transfer NMR spectroscopy (Tugarinov et al. in J Am Chem Soc 129:1743â??1750, 2007) is an established experimental tool for quantitative estimation of the amplitudes of side-chain motions in methyl-protonated, highly deuterated proteins. Relaxation violated coherence transfer experiments monitor the build-up of methyl proton multiple-quantum coherences that can be created in magnetically equivalent...
nmrlearner Journal club 0 02-11-2012 10:31 AM
A segmental labeling strategy for unambiguous determination of domainâ??domain interactions of large multi-domain proteins
A segmental labeling strategy for unambiguous determination of domainâ??domain interactions of large multi-domain proteins Abstract NMR structural determination of large multi-domain proteins is a challenging task due to significant spectral overlap with a particular difficulty in unambiguous identification of domainâ??domain interactions. Segmental labeling is a NMR strategy that allows for isotopically labeling one domain and leaves the other domain unlabeled. This significantly simplifies spectral overlaps and allows for quick identification of domainâ??domain interaction. Here, a...
nmrlearner Journal club 0 07-08-2011 07:01 PM
Analysis of non-uniformly sampled spectra with Multi-Dimensional Decomposition
Analysis of non-uniformly sampled spectra with Multi-Dimensional Decomposition Publication year: 2011 Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 24 February 2011</br> Vladislav Yu., Orekhov , Victor A., Jaravine</br> More...
nmrlearner Journal club 0 02-26-2011 01:07 PM
Very simple combination of TROSY, CRINEPT and multiple quantum coherence for signal enhancement in an HN(CO)CA experiment for large proteins
Very simple combination of TROSY, CRINEPT and multiple quantum coherence for signal enhancement in an HN(CO)CA experiment for large proteins Publication year: 2011 Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 3 February 2011</br> Monika, Bayrhuber , Roland, Riek</br> Sensitivity enhancement in liquid state nuclear magnetic resonance (NMR) triple resonance experiments for the sequential assignment of proteins is important for the investigation of large proteins or protein complexes. We present here the 3D TROSY-MQ/CRINEPT-HN(CO)CA which makes...
nmrlearner Journal club 0 02-04-2011 07:03 AM
[NMR paper] 1H,15N,13C-triple resonance NMR of very large systems at 900 MHz.
1H,15N,13C-triple resonance NMR of very large systems at 900 MHz. Related Articles 1H,15N,13C-triple resonance NMR of very large systems at 900 MHz. J Magn Reson. 2003 Aug;163(2):360-8 Authors: Chung J, Kroon G We provide quantitative signal to noise data and feasibility study at 900 MHz for 1H-15N-13C triple resonance backbone assignment pulse sequences obtained from a medium sized 2H, 13C, 15N labeled protein slowed down in glycerol-water solution to mimic relaxation and spectroscopic properties of a much larger protein system with...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Fast multi-dimensional NMR of proteins.
Fast multi-dimensional NMR of proteins. Related Articles Fast multi-dimensional NMR of proteins. J Biomol NMR. 2003 Apr;25(4):349-54 Authors: Kupce E, Freeman R Three-dimensional HNCO and HNCA subspectra from a small protein (agitoxin, 4 kDa, enriched in carbon-13 and nitrogen-15), have been obtained by direct frequency-domain excitation of selected carbon and nitrogen sites. This new technique applies an array of several simultaneous soft radiofrequency spin-inversion pulses, encoded (on or off) according to nested Hadamard matrices, and the...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] The role of coherence transfer efficiency in design of TROSY-type multidimensional NM
The role of coherence transfer efficiency in design of TROSY-type multidimensional NMR experiments. Related Articles The role of coherence transfer efficiency in design of TROSY-type multidimensional NMR experiments. J Magn Reson. 1999 Aug;139(2):439-42 Authors: Meissner A, Sørensen OW An improved method for TROSY-type (Pervushin et al., Proc. Natl. Acad. Sci. USA 94, 12366-12371 (1997)) heteronuclear two-dimensional correlation involving protons of negligible CSA is presented. Rather than applying a simple INEPT sequence for back-transfer to...
nmrlearner Journal club 0 11-18-2010 08:31 PM
[NMR paper] Polarization transfer by cross-correlated relaxation in solution NMR with very large
Polarization transfer by cross-correlated relaxation in solution NMR with very large molecules. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-custom-pnas_full_free.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Polarization transfer by cross-correlated relaxation in solution NMR with very large molecules. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):4918-23 Authors: Riek R, Wider G, Pervushin K, Wüthrich...
nmrlearner Journal club 0 08-21-2010 04:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:09 PM.


Map