Publication date: Available online 30 March 2017 Source:Progress in Nuclear Magnetic Resonance Spectroscopy
Author(s): Melanie M. Britton
As magnetic resonance imaging (MRI) can spatially resolve a wealth of molecular information available from nuclear magnetic resonance (NMR), it is able to non-invasively visualise the composition, properties and reactions of a broad range of spatially-heterogeneous molecular systems. Hence, MRI is increasingly finding applications in the study of chemical reactions and processes in a diverse range of environments and technologies. This article will explain the basic principles of MRI and how it can be used to visualise chemical composition and molecular properties, providing an overview of the variety of information available. Examples are drawn from the disciplines of chemistry, chemical engineering, environmental science, physics, electrochemistry and materials science. The review introduces a range of techniques used to produce image contrast, along with the chemical and molecular insight accessible through them. Methods for mapping the distribution of chemical species, using chemical shift imaging or spatially-resolved spectroscopy, are reviewed, as well as methods for visualising physical state, temperature, current density, flow velocities and molecular diffusion. Strategies for imaging materials with low signal intensity, such as those containing gases or low sensitivity nuclei, using compressed sensing, para-hydrogen or polarisation transfer, are discussed. Systems are presented which encapsulate the diversity of chemical and physical parameters observable by MRI, including one- and two-phase flow in porous media, chemical pattern formation, phase transformations and hydrodynamic (fingering) instabilities. Lastly, the emerging area of electrochemical MRI is discussed, with studies presented on the visualisation of electrochemical deposition and dissolution processes during corrosion and the operation of batteries, supercapacitors and fuel cells. Graphical abstract
Longitudinal relaxation optimized amide 1 H-CEST experiments for studying slow chemical exchange processes in fully protonated proteins
Longitudinal relaxation optimized amide 1 H-CEST experiments for studying slow chemical exchange processes in fully protonated proteins
Abstract
Chemical Exchange Saturation Transfer (CEST) experiments are increasingly used to study slow timescale exchange processes in biomolecules. Although 15N- and 13C-CEST have been the approaches of choice, the development of spin state selective 1H-CEST pulse sequences that separate the effects of chemical and dipolar exchange significantly increases the utility of 1H-based experiments. Pulse schemes have been...
nmrlearner
Journal club
0
03-30-2017 06:42 PM
Dissolution dynamic nuclear polarization–enhanced magnetic resonance spectroscopy and imaging: Chemical and biochemical reactions in nonequilibrium conditions #DNPNMR
From The DNP-NMR Blog:
Dissolution dynamic nuclear polarization–enhanced magnetic resonance spectroscopy and imaging: Chemical and biochemical reactions in nonequilibrium conditions #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Lee, Y., Dissolution dynamic nuclear polarization–enhanced magnetic resonance spectroscopy and imaging: Chemical and biochemical reactions in nonequilibrium conditions. Applied Spectroscopy Reviews, 2015. 51(3): p. 210-226.
https://doi.org/10.1080/05704928.2015.1116078
nmrlearner
News from NMR blogs
0
12-30-2016 04:53 PM
[NMR paper] Spin Saturation Transfer Difference NMR (SSTD NMR): A New Tool to Obtain Kinetic Parameters of Chemical Exchange Processes.
Spin Saturation Transfer Difference NMR (SSTD NMR): A New Tool to Obtain Kinetic Parameters of Chemical Exchange Processes.
Spin Saturation Transfer Difference NMR (SSTD NMR): A New Tool to Obtain Kinetic Parameters of Chemical Exchange Processes.
J Vis Exp. 2016 Nov 12;(117):
Authors: Quirós MT, Macdonald C, Angulo J, Muñoz MP
Abstract
This detailed protocol describes the new Spin Saturation Transfer Difference Nuclear Magnetic Resonance protocol (SSTD NMR), recently developed in our group to study processes of mutual-site...
nmrlearner
Journal club
0
12-04-2016 02:24 AM
[NMR paper] Weak Intermolecular Hydrogen Bonds with Fluorine: Detection and Implications for Enzymatic/Chemical Reactions, Chemical Properties, and Ligand/Protein Fluorine NMR Screening.
Weak Intermolecular Hydrogen Bonds with Fluorine: Detection and Implications for Enzymatic/Chemical Reactions, Chemical Properties, and Ligand/Protein Fluorine NMR Screening.
Related Articles Weak Intermolecular Hydrogen Bonds with Fluorine: Detection and Implications for Enzymatic/Chemical Reactions, Chemical Properties, and Ligand/Protein Fluorine NMR Screening.
Chemistry. 2016 Apr 26;
Authors: Dalvit C, Vulpetti A
Abstract
It is known that strong hydrogen-bonding interactions play an important role in many chemical and...
nmrlearner
Journal club
0
04-27-2016 01:51 PM
[NMR paper] NMR-based techniques in the hit identification and optimisation processes.
NMR-based techniques in the hit identification and optimisation processes.
Related Articles NMR-based techniques in the hit identification and optimisation processes.
Expert Opin Ther Targets. 2004 Dec;8(6):597-611
Authors: Pellecchia M, Becattini B, Crowell KJ, Fattorusso R, Forino M, Fragai M, Jung D, Mustelin T, Tautz L
In this review, the use of general NMR spectroscopy techniques to detect ligand binding and to monitor enzyme kinetics and inhibition, which appear particularly useful in hit identification and validation, is reiterated....
nmrlearner
Journal club
0
11-24-2010 10:03 PM
[NMR paper] An NMR investigation of solution aggregation reactions preceding the misassembly of a
An NMR investigation of solution aggregation reactions preceding the misassembly of acid-denatured cold shock protein A into fibrils.
Related Articles An NMR investigation of solution aggregation reactions preceding the misassembly of acid-denatured cold shock protein A into fibrils.
J Mol Biol. 1999 Sep 3;291(5):1191-206
Authors: Alexandrescu AT, Rathgeb-Szabo K
At pH 2.0, acid-denatured CspA undergoes a slow self-assembly process, which results in the formation of insoluble fibrils. 1H-15N HSQC, 3D HSQC-NOESY, and 15N T2 NMR experiments have...