Related ArticlesMotions and Entropies in Proteins as Seen in NMR Relaxation Experiments and Molecular Dynamics Simulations.
J Phys Chem B. 2014 Oct 28;
Authors: Allnér O, Foloppe N, Nilsson L
Abstract
Molecular dynamics simulations of E. coli glutaredoxin1 in water have been performed to relate the dynamical parameters and entropy obtained in NMR relaxation experiments, with results extracted from simulated trajectory data. NMR relaxation is the most widely used experimental method to obtain data on dynamics of proteins, but it is limited to relatively short timescales and to motions of backbone amides or in some cases (13)C-H vectors. By relating the experimental data to the all-atom picture obtained in molecular dynamics simulations, valuable insights on the interpretation of the experiment can be gained. We have estimated the internal dynamics and their timescales by calculating the generalized order parameters (O) for different time windows. We then calculate the quasiharmonic entropy (S) and compare it to the entropy calculated from the NMR-derived generalized order parameter of the amide vectors. Special emphasis is put on characterizing dynamics that are not expressed through the motions of the amide group. The NMR and MD methods suffer from complementary limitations, with NMR being restricted to local vectors and dynamics on a timescale determined by the rotational diffusion of the solute, while in simulations, it may be difficult to obtain sufficient sampling to ensure convergence of the results. We also evaluate the amount of sampling obtained with molecular dynamics simulations and how it is affected by the length of individual simulations, by clustering of the sampled conformations. We find that two structural turns act as hinges, allowing the ? helix between them to undergo large, long timescale motions that cannot be detected in the time window of the NMR dipolar relaxation experiments. We also show that the entropy obtained from the amide vector does not account for correlated motions of adjacent residues. Finally, we show that the sampling in a total of 100 ns molecular dynamics simulation can be increased by around 50%, by dividing the trajectory into 10 replicas with different starting velocities.
PMID: 25350574 [PubMed - as supplied by publisher]
[NMR paper] NMR Relaxation in Proteins with Fast Internal Motions and Slow Conformational Exchange: Model Free Framework and Markov State Simulations.
NMR Relaxation in Proteins with Fast Internal Motions and Slow Conformational Exchange: Model Free Framework and Markov State Simulations.
NMR Relaxation in Proteins with Fast Internal Motions and Slow Conformational Exchange: Model Free Framework and Markov State Simulations.
J Phys Chem B. 2013 May 2;
Authors: Xia J, Deng NJ, Levy RM
Abstract
Calculating NMR relaxation effects for proteins with dynamics on multiple timescales generally requires very long trajectories based on conventional molecular dynamics simulations. In this report,...
nmrlearner
Journal club
0
05-04-2013 09:18 PM
[NMR paper] Assessment of the Use of NMR Chemical Shifts as Replica-Averaged Structural Restraints in Molecular Dynamics Simulations to Characterize the Dynamics of Proteins.
Assessment of the Use of NMR Chemical Shifts as Replica-Averaged Structural Restraints in Molecular Dynamics Simulations to Characterize the Dynamics of Proteins.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Assessment of the Use of NMR Chemical Shifts as Replica-Averaged Structural Restraints in Molecular Dynamics Simulations to Characterize the Dynamics of Proteins.
J Phys Chem B. 2013 Feb 1;
Authors: Camilloni C, Cavalli A, Vendruscolo M
Abstract
It has been recently...
Membrane binding of an acyl-lactoferricin B antimicrobial peptide from solid-state NMR experiments and molecular dynamics simulations.
Membrane binding of an acyl-lactoferricin B antimicrobial peptide from solid-state NMR experiments and molecular dynamics simulations.
Membrane binding of an acyl-lactoferricin B antimicrobial peptide from solid-state NMR experiments and molecular dynamics simulations.
Biochim Biophys Acta. 2011 Aug;1808(8):2019-30
Authors: Romo TD, Bradney LA, Greathouse DV, Grossfield A
Abstract
One approach to the growing health problem of antibiotic resistant bacteria is the development of antimicrobial peptides (AMPs) as alternative treatments. The...
nmrlearner
Journal club
0
08-19-2011 02:56 PM
Structure and Dynamics of the A?21–30 Peptide from the Interplay of NMR Experiments and Molecular Simulations
Structure and Dynamics of the A?21–30 Peptide from the Interplay of NMR Experiments and Molecular Simulations
Nicolas L. Fawzi, Aaron H. Phillips, Jory Z. Ruscio, Michaeleen Doucleff, David E. Wemmer and Teresa Head-Gordon
Journal of the American Chemical Society
DOI: 10.1021/ja204315n
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/bEQEah_ik60
nmrlearner
Journal club
0
07-09-2011 07:11 AM
Can Enzyme Engineering Benefit from the Modulation of Protein Motions? Lessons Learned from NMR Relaxation Dispersion Experiments.
Can Enzyme Engineering Benefit from the Modulation of Protein Motions? Lessons Learned from NMR Relaxation Dispersion Experiments.
Can Enzyme Engineering Benefit from the Modulation of Protein Motions? Lessons Learned from NMR Relaxation Dispersion Experiments.
Protein Pept Lett. 2011 Jan 11;
Authors:
Despite impressive progress in protein engineering and design, our ability to create new and efficient enzyme activities remains a laborious and time-consuming endeavor. In the past few years, intricate combinations of rational mutagenesis, directed...
nmrlearner
Journal club
0
01-13-2011 12:00 PM
[NMR paper] Accuracy and precision of NMR relaxation experiments and MD simulations for character
Accuracy and precision of NMR relaxation experiments and MD simulations for characterizing protein dynamics.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_120x27.gif Related Articles Accuracy and precision of NMR relaxation experiments and MD simulations for characterizing protein dynamics.
Proteins. 1997 Aug;28(4):481-93
Authors: Philippopoulos M, Mandel AM, Palmer AG, Lim C
Model-free parameters obtained from nuclear magnetic resonance (NMR) relaxation...