Related ArticlesMonitoring Ras Interactions with the Nucleotide Exchange Factor Sos using Site-specific NMR Reporter Signals and Intrinsic Fluorescence.
J Biol Chem. 2015 Nov 12;
Authors: Vo U, Vajpai N, Flavell L, Bobby R, Breeze AL, Embrey KJ, Golovanov AP
Abstract
The activity of Ras is controlled by the inter-conversion between GTP- and GDP-bound forms, partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly [15N]-labeled Ras, as well as [13C-methyl-M,I]-labeled Sos, for observing site-specific details of Ras:Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP, or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized, by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants, as well as their selected functional mutants, was also investigated using intrinsic fluorescence. The data supports a positive feedback activation of Sos by Ras-GTP, with Ras-GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras-GDP, suggesting that Sos should actively promote unidirectional GDP->GTP exchange on Ras, in preference of passive homonucleotide exchange. Ras-GDP weakly binds to the catalytic, but not to the allosteric site of Sos. This confirms that Ras-GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras:Sos interactions.
PMID: 26565026 [PubMed - as supplied by publisher]
[NMR paper] A chemical approach for site-specific identification of NMR signals from protein side-chain NH3 (+) groups forming intermolecular ion pairs in protein-nucleic acid complexes.
A chemical approach for site-specific identification of NMR signals from protein side-chain NH3 (+) groups forming intermolecular ion pairs in protein-nucleic acid complexes.
Related Articles A chemical approach for site-specific identification of NMR signals from protein side-chain NH3 (+) groups forming intermolecular ion pairs in protein-nucleic acid complexes.
J Biomol NMR. 2015 Feb 19;
Authors: Anderson KM, Nguyen D, Esadze A, Zandrashvili L, Gorenstein DG, Iwahara J
Abstract
Protein-nucleic acid interactions involve...
nmrlearner
Journal club
0
02-19-2015 07:03 PM
A chemical approach for site-specific identification of NMR signals from protein side-chain NH 3 + groups forming intermolecular ion pairs in proteinā??nucleic acid complexes
A chemical approach for site-specific identification of NMR signals from protein side-chain NH 3 + groups forming intermolecular ion pairs in proteinā??nucleic acid complexes
Abstract
Proteinā??nucleic acid interactions involve intermolecular ion pairs of protein side-chain and DNA or RNA phosphate groups. Using three proteinā??DNA complexes, we demonstrate that site-specific oxygen-to-sulfur substitution in phosphate groups allows for identification of NMR signals from the protein side-chain NH3 + groups forming the...
nmrlearner
Journal club
0
02-18-2015 06:15 PM
[NMR paper] Probing the rate limiting step for intramolecular transfer of a transcription factor between specific sites on the same DNA molecule by 15Nz-exchange NMR spectroscopy.
Probing the rate limiting step for intramolecular transfer of a transcription factor between specific sites on the same DNA molecule by 15Nz-exchange NMR spectroscopy.
Related Articles Probing the rate limiting step for intramolecular transfer of a transcription factor between specific sites on the same DNA molecule by 15Nz-exchange NMR spectroscopy.
J Am Chem Soc. 2014 Sep 25;
Authors: Ryu KS, Tugarinov V, Clore GM
Abstract
The kinetics of translocation of the homeodomain transcription factor HoxD9 between specific sites of...
nmrlearner
Journal club
0
09-26-2014 01:03 PM
[NMR paper] Site-specific NMR mapping and time-resolved monitoring of serine and threonine phosphorylation in reconstituted kinase reactions and mammalian cell extracts.
Site-specific NMR mapping and time-resolved monitoring of serine and threonine phosphorylation in reconstituted kinase reactions and mammalian cell extracts.
Site-specific NMR mapping and time-resolved monitoring of serine and threonine phosphorylation in reconstituted kinase reactions and mammalian cell extracts.
Nat Protoc. 2013 Jun 27;8(7):1416-1432
Authors: Theillet FX, Rose HM, Liokatis S, Binolfi A, Thongwichian R, Stuiver M, Selenko P
Abstract
We outline NMR protocols for site-specific mapping and time-resolved monitoring of...
nmrlearner
Journal club
0
06-29-2013 11:49 AM
Site-Specific Mapping and Time-Resolved Monitoring of Lysine Methylation by High-Resolution NMR Spectroscopy
Site-Specific Mapping and Time-Resolved Monitoring of Lysine Methylation by High-Resolution NMR Spectroscopy
Franc?ois-Xavier Theillet, Stamatios Liokatis, Jan Oliver Jost, Beata Bekei, Honor May Rose, Andres Binolfi, Dirk Schwarzer and Philipp Selenko
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja301895f/aop/images/medium/ja-2012-01895f_0003.gif
Journal of the American Chemical Society
DOI: 10.1021/ja301895f
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/tV2dPnMa4Qc
nmrlearner
Journal club
0
04-27-2012 10:27 PM
Site-Specific Solid-State NMR Detection of Hydrogen-Deuterium Exchange Reveals Conformational Changes in a 7-Helical Transmembrane Protein.
Site-Specific Solid-State NMR Detection of Hydrogen-Deuterium Exchange Reveals Conformational Changes in a 7-Helical Transmembrane Protein.
Site-Specific Solid-State NMR Detection of Hydrogen-Deuterium Exchange Reveals Conformational Changes in a 7-Helical Transmembrane Protein.
Biophys J. 2011 Aug 3;101(3):L23-L25
Authors: Wang S, Shi L, Kawamura I, Brown LS, Ladizhansky V
Solid-state NMR spectroscopy is an efficient tool for following conformational dynamics of membrane proteins at atomic resolution. We used this technique for the site-specific...
nmrlearner
Journal club
0
08-03-2011 12:00 PM
[NMR paper] Effect of urea denaturation on tryptophan fluorescence and nucleotide binding on tubu
Effect of urea denaturation on tryptophan fluorescence and nucleotide binding on tubulin studied by fluorescence and NMR spectroscopic methods.
Related Articles Effect of urea denaturation on tryptophan fluorescence and nucleotide binding on tubulin studied by fluorescence and NMR spectroscopic methods.
Physiol Chem Phys Med NMR. 2001;33(2):139-51
Authors: Kuchroo K, Maity H, Kasturi SR
Tubulin, the major protein of microtubules, has been shown to be an example of protein undergoing multistep unfolding. Local unfolding and stepwise loss of a...
nmrlearner
Journal club
0
11-19-2010 08:32 PM
[NMR paper] Probing site-specific interactions in protein-DNA complexes using heteronuclear NMR s
Probing site-specific interactions in protein-DNA complexes using heteronuclear NMR spectroscopy and molecular modeling: binding of Cro repressor to OR3.
Related Articles Probing site-specific interactions in protein-DNA complexes using heteronuclear NMR spectroscopy and molecular modeling: binding of Cro repressor to OR3.
J Biomol Struct Dyn. 1998 Aug;16(1):13-20
Authors: Edwards CA, Tung CS, Silks LA, Gatewood JM, Fee JA, Mariappan SV
In this paper, a general method is developed to study site-specific interactions in DNA-protein complexes...