Abstract
High-pressure is a well-known perturbation method used to destabilize globular proteins. It is perfectly reversible, which is essential for a proper thermodynamic characterization of a protein equilibrium. In contrast to other perturbation methods such as heat or chemical denaturant that destabilize protein structures uniformly, pressure exerts local effects on regions or domains of a protein containing internal cavities. When combined with NMR spectroscopy, hydrostatic pressure offers the possibility to monitor at a residue level the structural transitions occurring upon unfolding and to determine the kinetic properties of the process. High-pressure NMR experiments can now be routinely performed, owing to the recent development of commercially available high-pressure sample cells. This review summarizes recent advances and some future directions of high-pressure NMR techniques for the characterization at atomic resolution of the energy landscape of protein folding.
[NMR paper] Monitoring Hydrogen Exchange During Protein Folding by Fast Pressure Jump NMR Spectroscopy.
Monitoring Hydrogen Exchange During Protein Folding by Fast Pressure Jump NMR Spectroscopy.
Related Articles Monitoring Hydrogen Exchange During Protein Folding by Fast Pressure Jump NMR Spectroscopy.
J Am Chem Soc. 2017 Aug 02;:
Authors: Alderson TR, Charlier C, Torchia DA, Anfinrud P, Bax A
Abstract
A method is introduced that permits direct observation of the rates at which backbone amide hydrogens become protected from solvent exchange after rapidly dropping the hydrostatic pressure inside the NMR sample cell from denaturing...
nmrlearner
Journal club
0
08-03-2017 11:48 AM
Monitoring Protein Folding Through High Pressure NMR Spectroscopy
Monitoring Protein Folding Through High Pressure NMR Spectroscopy
Publication date: Available online 2 June 2017
Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br>
Author(s): Julien Roche, Catherine A. Royer, Christian Roumestand</br>
High-pressure is a well-known perturbation method used to destabilize globular proteins. It is perfectly reversible, which is essential for a proper thermodynamic characterization of a protein equilibrium. In contrast to other perturbation methods such as heat or chemical denaturant that destabilize protein structures...
nmrlearner
Journal club
0
06-02-2017 08:33 PM
[NMR paper] High-pressure NMR techniques for the study of protein dynamics, folding and aggregation.
High-pressure NMR techniques for the study of protein dynamics, folding and aggregation.
Related Articles High-pressure NMR techniques for the study of protein dynamics, folding and aggregation.
J Magn Reson. 2017 Apr;277:179-185
Authors: Nguyen LM, Roche J
Abstract
High-pressure is a well-known perturbation method used to destabilize globular proteins and dissociate protein complexes or aggregates. The heterogeneity of the response to pressure offers a unique opportunity to dissect the thermodynamic contributions to protein...
nmrlearner
Journal club
0
04-02-2017 11:43 AM
High-pressure NMR techniques for the study of protein dynamics, folding and aggregation
High-pressure NMR techniques for the study of protein dynamics, folding and aggregation
Publication date: April 2017
Source:Journal of Magnetic Resonance, Volume 277</br>
Author(s): Luan M. Nguyen, Julien Roche</br>
High-pressure is a well-known perturbation method used to destabilize globular proteins and dissociate protein complexes or aggregates. The heterogeneity of the response to pressure offers a unique opportunity to dissect the thermodynamic contributions to protein stability. In addition, pressure perturbation is generally reversible, which is essential...
nmrlearner
Journal club
0
03-30-2017 06:42 PM
Using High Pressure NMR to Study Folding Cooperativity and Kinetics of Protein L9
Using High Pressure NMR to Study Folding Cooperativity and Kinetics of Protein L9
Publication date: 3 February 2017
Source:Biophysical Journal, Volume 112, Issue 3, Supplement 1</br>
Author(s): Yi Zhang, Soichiro Kitazawa, Ivan Peran, Natalie Stenzoski, Scott McCallum, Daniel Raleigh, Catherine Royer</br>
</br></br>
</br></br>
More...
[NMR paper] The Energetics of a Three-State Protein Folding System Probed by High-Pressure Relaxation Dispersion NMR Spectroscopy.
The Energetics of a Three-State Protein Folding System Probed by High-Pressure Relaxation Dispersion NMR Spectroscopy.
Related Articles The Energetics of a Three-State Protein Folding System Probed by High-Pressure Relaxation Dispersion NMR Spectroscopy.
Angew Chem Int Ed Engl. 2015 Sep 14;54(38):11157-11161
Authors: Tugarinov V, Libich DS, Meyer V, Roche J, Clore GM
Abstract
The energetic and volumetric properties of a three-state protein folding system, comprising a metastable triple mutant of the Fyn SH3 domain, have been...
nmrlearner
Journal club
0
09-10-2015 02:01 PM
[NMR paper] High-pressure NMR spectroscopy for characterizing folding intermediates and denatured
High-pressure NMR spectroscopy for characterizing folding intermediates and denatured states of proteins.
Related Articles High-pressure NMR spectroscopy for characterizing folding intermediates and denatured states of proteins.
Methods. 2004 Sep;34(1):133-43
Authors: Kamatari YO, Kitahara R, Yamada H, Yokoyama S, Akasaka K
Extensive structural studies using high-pressure NMR spectroscopy have recently been carried out on proteins, which potentially contribute to our understanding of the mechanisms of protein folding. Pressure shifts the...