BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 01-21-2021, 04:12 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Molecular Simulations suggest Vitamins, Retinoids and Steroids as Ligands of the Free Fatty Acid Pocket of the SARS-CoV-2 Spike Protein

Molecular Simulations suggest Vitamins, Retinoids and Steroids as Ligands of the Free Fatty Acid Pocket of the SARS-CoV-2 Spike Protein


Angewandte Chemie International Edition, Accepted Article.

More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Structural characterization of the N-linked glycans in the receptor binding domain of the SARS-CoV-2 spike protein and their interactions with human lectins using NMR spectroscopy - Wiley
Structural characterization of the N-linked glycans in the receptor binding domain of the SARS-CoV-2 spike protein and their interactions with human lectins using NMR spectroscopy - Wiley Structural characterization of the N-linked glycans in the receptor binding domain of the SARS-CoV-2 spike protein and their interactions with human lectins using NMR spectroscopy Wiley Read here
nmrlearner Online News 0 09-26-2020 07:23 AM
Structural characterization of the N-linked glycans in the receptor binding domain of the SARS-CoV-2 spike protein and their interactions with human lectins using NMR spectroscopy - Wiley
Structural characterization of the N-linked glycans in the receptor binding domain of the SARS-CoV-2 spike protein and their interactions with human lectins using NMR spectroscopy - Wiley Structural characterization of the N-linked glycans in the receptor binding domain of the SARS-CoV-2 spike protein and their interactions with human lectins using NMR spectroscopy Wiley Read here
nmrlearner Online News 0 09-13-2020 09:18 AM
[NMR paper] Structural characterization of the N-linked glycans in the receptor binding domain of the SARS-CoV-2 spike protein and*their interactions with human lectins using NMR spectroscopy.
Structural characterization of the N-linked glycans in the receptor binding domain of the SARS-CoV-2 spike protein and*their interactions with human lectins using NMR spectroscopy. Structural characterization of the N-linked glycans in the receptor binding domain of the SARS-CoV-2 spike protein and*their interactions with human lectins using NMR spectroscopy. Angew Chem Int Ed Engl. 2020 Sep 11;: Authors: Lenza MP, Oyenarte I, Diercks T, Quintana JI, Gimeno A, Bosch A, Coelho H, Diniz A, Peccati F, Delgado S, Valle M, Millet O, Abrescia NGA,...
nmrlearner Journal club 0 09-13-2020 09:18 AM
[NMR paper] Structural characterization of the N-linked glycans in the receptor binding domain of the SARS-CoV-2 spike protein and*their interactions with human lectins using NMR spectroscopy
Structural characterization of the N-linked glycans in the receptor binding domain of the SARS-CoV-2 spike protein and*their interactions with human lectins using NMR spectroscopy Angewandte Chemie International Edition, Accepted Article. More...
nmrlearner Journal club 0 09-13-2020 09:18 AM
Molecular Simulations Reveal an Unresolved Conformationof the Type IA Protein Kinase A Regulatory Subunit and Suggest ItsRole in the cAMP Regulatory Mechanism
Molecular Simulations Reveal an Unresolved Conformationof the Type IA Protein Kinase A Regulatory Subunit and Suggest ItsRole in the cAMP Regulatory Mechanism http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.7b00461/20170717/images/medium/bi-2017-00461q_0003.gif Biochemistry DOI: 10.1021/acs.biochem.7b00461 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/pu40kY-RYM0 More...
nmrlearner Journal club 0 07-18-2017 07:52 AM
Branched Fatty Acid Esters of Hydroxy Fatty AcidsAre Preferred Substrates of the MODY8 Protein Carboxyl Ester Lipase
Branched Fatty Acid Esters of Hydroxy Fatty AcidsAre Preferred Substrates of the MODY8 Protein Carboxyl Ester Lipase http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.6b00565/20160810/images/medium/bi-2016-005654_0006.gif Biochemistry DOI: 10.1021/acs.biochem.6b00565 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/5hcTbvGS4MY More...
nmrlearner Journal club 0 08-11-2016 06:27 AM
[NMR paper] Interaction of chicken liver basic fatty acid-binding protein with fatty acids: a 13C
Interaction of chicken liver basic fatty acid-binding protein with fatty acids: a 13C NMR and fluorescence study. Related Articles Interaction of chicken liver basic fatty acid-binding protein with fatty acids: a 13C NMR and fluorescence study. Biochemistry. 2001 Oct 23;40(42):12604-11 Authors: Beringhelli T, Goldoni L, Capaldi S, Bossi A, Perduca M, Monaco HL Two different groups of liver fatty acid-binding proteins (L-FABPs) are known: the mammalian type and the basic type. Very few members of this second group of L-FABPs have been...
nmrlearner Journal club 0 11-19-2010 08:44 PM
[NMR paper] 13C NMR studies of fatty acid-protein interactions: comparison of homologous fatty ac
13C NMR studies of fatty acid-protein interactions: comparison of homologous fatty acid-binding proteins produced in the intestinal epithelium. Related Articles 13C NMR studies of fatty acid-protein interactions: comparison of homologous fatty acid-binding proteins produced in the intestinal epithelium. Mol Cell Biochem. 1990 Oct 15-Nov 8;98(1-2):101-10 Authors: Cistola DP, Sacchettini JC, Gordon JI A high-resolution, solution-state NMR method for characterizing and comparing the interactions between carboxyl 13C-enriched fatty acids (FA) and...
nmrlearner Journal club 0 08-21-2010 11:04 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:24 AM.


Map