Molecular simulations and solid-state NMR investigate dynamical structure in rhodopsin activation.
Biochim Biophys Acta. 2011 Aug 8;
Authors: Mertz B, Struts AV, Feller SE, Brown MF
Abstract
Rhodopsin has served as the primary model for studying G protein-coupled receptors (GPCRs)-the largest group in the human genome, and consequently a primary target for pharmaceutical development. Understanding the functions and activation mechanisms of GPCRs has proven to be extraordinarily difficult, as they are part of a complex signaling cascade and reside within the cell membrane. Although X-ray crystallography has recently solved several GPCR structures that may resemble the activated conformation, the dynamics and mechanism of rhodopsin activation continue to remain elusive. Notably solid-state ((2))H NMR spectroscopy provides key information pertinent to how local dynamics of the retinal ligand change during rhodopsin activation. When combined with molecular mechanics simulations of proteolipid membranes, a new paradigm for the rhodopsin activation process emerges. Experiment and simulation both suggest that retinal isomerization initiates the rhodopsin photocascade to yield not a single activated structure, but rather an ensemble of activated conformational states. This article is part of a Special Issue entitled: Membrane protein structure and function.
PMID: 21851809 [PubMed - as supplied by publisher]
Membrane binding of an acyl-lactoferricin B antimicrobial peptide from solid-state NMR experiments and molecular dynamics simulations.
Membrane binding of an acyl-lactoferricin B antimicrobial peptide from solid-state NMR experiments and molecular dynamics simulations.
Membrane binding of an acyl-lactoferricin B antimicrobial peptide from solid-state NMR experiments and molecular dynamics simulations.
Biochim Biophys Acta. 2011 Aug;1808(8):2019-30
Authors: Romo TD, Bradney LA, Greathouse DV, Grossfield A
Abstract
One approach to the growing health problem of antibiotic resistant bacteria is the development of antimicrobial peptides (AMPs) as alternative treatments. The...
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin [Biophysics and Computational Biology]
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin
Struts, A. V., Salgado, G. F. J., Brown, M. F....
Date: 2011-05-17
Rhodopsin is a canonical member of the family of G protein-coupled receptors, which transmit signals across cellular membranes and are linked to many drug interventions in humans. Here we show that solid-state 2H NMR relaxation allows investigation of light-induced changes in local ps–ns time scale motions of retinal bound to rhodopsin. Site-specific 2H labels were introduced into methyl groups of the...
nmrlearner
Journal club
0
05-17-2011 08:40 PM
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin.
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin.
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin.
Proc Natl Acad Sci U S A. 2011 Apr 28;
Authors: Struts AV, Salgado GF, Brown MF
Rhodopsin is a canonical member of the family of G protein-coupled receptors, which transmit signals across cellular membranes and are linked to many drug interventions in humans. Here we show that solid-state (2)H NMR relaxation...
nmrlearner
Journal club
0
04-30-2011 12:36 PM
Irregular structure of the HIV fusion peptide in membranes demonstrated by solid-state NMR and MD simulations.
Irregular structure of the HIV fusion peptide in membranes demonstrated by solid-state NMR and MD simulations.
Irregular structure of the HIV fusion peptide in membranes demonstrated by solid-state NMR and MD simulations.
Eur Biophys J. 2011 Jan 28;
Authors: Grasnick D, Sternberg U, Strandberg E, Wadhwani P, Ulrich AS
To better understand peptide-induced membrane fusion at a molecular level, we set out to determine the structure of the fusogenic peptide FP23 from the HIV-1 protein gp41 when bound to a lipid bilayer. An established solid-state...
nmrlearner
Journal club
0
01-29-2011 12:35 PM
[NMR paper] Probing conformational disorder in neurotensin by two-dimensional solid-state NMR and comparison to molecular dynamics simulations.
Probing conformational disorder in neurotensin by two-dimensional solid-state NMR and comparison to molecular dynamics simulations.
Related Articles Probing conformational disorder in neurotensin by two-dimensional solid-state NMR and comparison to molecular dynamics simulations.
Biophys J. 2005 Sep;89(3):2113-20
Authors: Heise H, Luca S, de Groot BL, Grubmüller H, Baldus M
An approach is introduced to characterize conformational ensembles of intrinsically unstructured peptides on the atomic level using two-dimensional solid-state NMR data and...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
Solid-state NMR and SAXS studies provide a structural basis for the activation of alp
Solid-state NMR and SAXS studies provide a structural basis for the activation of alphaB-crystallin oligomers.
Related Articles Solid-state NMR and SAXS studies provide a structural basis for the activation of alphaB-crystallin oligomers.
Nat Struct Mol Biol. 2010 Aug 29;
Authors: Jehle S, Rajagopal P, Bardiaux B, Markovic S, Kühne R, Stout JR, Higman VA, Klevit RE, van Rossum BJ, Oschkinat H
The small heat shock protein alphaB-crystallin (alphaB) contributes to cellular protection against stress. For decades, high-resolution structural studies on...
nmrlearner
Journal club
0
08-31-2010 09:42 PM
Solid-State NMR Reveals Structural and Dynamical Properties of a Membrane Protein
http://pubs.acs.org/cgi-bin/abstract.cgi/jacsat/2007/129/i21/abs/ja069028m.html
Solid-State NMR Reveals Structural and Dynamical Properties of a Membrane-Anchored Electron-Carrier Protein, Cytochrome b<sub>5</sub>
<aui auinm="Durr, U. H. N."> <aui auinm="Yamamoto, K."> <aui auinm="Im, S.-C."> <aui auinm="Waskell, L."> <aui auinm="Ramamoorthy, A."> <aug><aul></aul></aug></aui></aui></aui></aui></aui> <au>Ulrich H. N. Dürr,</au> <au>Kazutoshi Yamamoto,</au><au>Sang-Choul Im,</au><au>Lucy Waskell,and </au><au>Ayyalusamy Ramamoorthy*</au>
*ramamoor@umich.edu
<aff></aff>
...