Related ArticlesA molecular dynamics simulations-based interpretation of NMR multidimensional heteronuclear spectra of alpha-synuclein/dopamine adducts.
Biochemistry. 2013 Aug 21;
Authors: Dibenedetto D, Rossetti G, Caliandro R, Carloni P
Abstract
Multidimensional heteronuclear NMR spectroscopy provides valuable structural information on adducts between naturally unfolded proteins and their ligands. These are often of high pharmacological relevance. Unfortunately, the determination of the contributions to observed chemical shifts changes upon ligand binding is difficult. Here we present a tool that uses molecular dynamics (MD) trajectories to help interpret 2D NMR data. We apply this tool to the naturally unfolded protein human ?-synuclein interacting with dopamine, an inhibitor of fibril formation, and with its oxidation products in water solution. By coupling 2D NMR experiments with MD simulations of the adducts in explicit water, the tool confirms that the ligands bind preferentially to 125YEMPS129 residues in the C-terminal and, to few residues of the so-called NAC region, consistently with experimental data. It also suggests that the ligands might cause conformational rearrangements of distal residues located at the N-terminal. Hence, performed analysis provides a rationale for the observed changes in chemical shifts in terms of direct contacts with the ligand and conformational changes of the protein.
PMID: 23964651 [PubMed - as supplied by publisher]
[NMR paper] Temperature-dependent structural changes of Parkinson's alpha-synuclein reveal the role of pre-existing oligomers in alpha-synuclein fibrillization.
Temperature-dependent structural changes of Parkinson's alpha-synuclein reveal the role of pre-existing oligomers in alpha-synuclein fibrillization.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.plosone.org-images-pone_120x30.png http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Temperature-dependent structural changes of Parkinson's alpha-synuclein reveal the role of pre-existing oligomers in alpha-synuclein fibrillization.
PLoS One. 2013;8(1):e53487
Authors: ...
nmrlearner
Journal club
0
02-03-2013 10:19 AM
[NMR paper] Assessment of the Use of NMR Chemical Shifts as Replica-Averaged Structural Restraints in Molecular Dynamics Simulations to Characterize the Dynamics of Proteins.
Assessment of the Use of NMR Chemical Shifts as Replica-Averaged Structural Restraints in Molecular Dynamics Simulations to Characterize the Dynamics of Proteins.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Assessment of the Use of NMR Chemical Shifts as Replica-Averaged Structural Restraints in Molecular Dynamics Simulations to Characterize the Dynamics of Proteins.
J Phys Chem B. 2013 Feb 1;
Authors: Camilloni C, Cavalli A, Vendruscolo M
Abstract
It has been recently...
nmrlearner
Journal club
0
02-03-2013 10:19 AM
Structure and Dynamics of the A?2130 Peptide from the Interplay of NMR Experiments and Molecular Simulations
Structure and Dynamics of the A?2130 Peptide from the Interplay of NMR Experiments and Molecular Simulations
Nicolas L. Fawzi, Aaron H. Phillips, Jory Z. Ruscio, Michaeleen Doucleff, David E. Wemmer and Teresa Head-Gordon
Journal of the American Chemical Society
DOI: 10.1021/ja204315n
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/bEQEah_ik60
nmrlearner
Journal club
0
07-09-2011 07:11 AM
[NMR paper] Molecular dynamics simulations of protein G challenge NMR-derived correlated backbone
Molecular dynamics simulations of protein G challenge NMR-derived correlated backbone motions.
Related Articles Molecular dynamics simulations of protein G challenge NMR-derived correlated backbone motions.
Angew Chem Int Ed Engl. 2005 May 30;44(22):3394-9
Authors: Lange OF, Grubmüller H, de Groot BL
nmrlearner
Journal club
0
11-25-2010 08:21 PM
[NMR paper] Molecular dynamics simulations of photoactive yellow protein (PYP) in three states of
Molecular dynamics simulations of photoactive yellow protein (PYP) in three states of its photocycle: a comparison with X-ray and NMR data and analysis of the effects of Glu46 deprotonation and mutation.
Related Articles Molecular dynamics simulations of photoactive yellow protein (PYP) in three states of its photocycle: a comparison with X-ray and NMR data and analysis of the effects of Glu46 deprotonation and mutation.
Eur Biophys J. 2002 Dec;31(7):504-20
Authors: Antes I, Thiel W, van Gunsteren WF
Photoactive yellow protein (PYP) is a...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
[NMR paper] The solution conformations of amino acids from molecular dynamics simulations of Gly-
The solution conformations of amino acids from molecular dynamics simulations of Gly-X-Gly peptides: comparison with NMR parameters.
Related Articles The solution conformations of amino acids from molecular dynamics simulations of Gly-X-Gly peptides: comparison with NMR parameters.
Biochem Cell Biol. 1998;76(2-3):164-70
Authors: van der Spoel D
The conformations that amino acids can adopt in the random coil state are of fundamental interest in the context of protein folding research and studies of protein-peptide interactions. To date, no...
nmrlearner
Journal club
0
11-17-2010 11:06 PM
Methods of NMR structure refinement: molecular dynamics simulations improve the agree
Methods of NMR structure refinement: molecular dynamics simulations improve the agreement with measured NMR data of a C-terminal peptide of GCN4-p1.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--production.springer.de-OnlineResources-Logos-springerlink.gif Related Articles Methods of NMR structure refinement: molecular dynamics simulations improve the agreement with measured NMR data of a C-terminal peptide of GCN4-p1.
J Biomol NMR. 2010 Jul;47(3):221-35
Authors: Dolenc J, Missimer JH, Steinmetz MO, van Gunsteren WF
The C-terminal trigger...
nmrlearner
Journal club
0
09-15-2010 02:26 PM
Using NMR Chemical Shifts as Structural Restraints in Molecular Dynamics Simulations
Using NMR Chemical Shifts as Structural Restraints in Molecular Dynamics Simulations of Proteins.
Related Articles Using NMR Chemical Shifts as Structural Restraints in Molecular Dynamics Simulations of Proteins.
Structure. 2010 Aug 11;18(8):923-933
Authors: Robustelli P, Kohlhoff K, Cavalli A, Vendruscolo M
We introduce a procedure to determine the structures of proteins by incorporating NMR chemical shifts as structural restraints in molecular dynamics simulations. In this approach, the chemical shifts are expressed as differentiable...